Biomedical Microdevices

, Volume 15, Issue 3, pp 561–577 | Cite as

Monitoring systems and quantitative measurement of biomolecules for the management of Trauma



Continued high morbidity and complications due to trauma related hemorrhage underscores the fact that our understanding of the detailed molecular events of trauma are inadequate to bring life-saving changes to practice. The current state of efficacy and advances in biomedical microdevice technology for trauma diagnostics concerning hemorrhage and hemorrhagic shock was considered with respect to vital signs and metabolic biomarkers. Tachycardia and hypotension are markers of hemorrhagic shock in decompensated trauma patients. Base deficit has been predicative of injury severity at hospital admission. Tissue oxygen saturation has been predicative of onset of multiple organ dysfunction syndrome. Blood potassium levels increase with onset of hemorrhagic shock. Lactate is a surrogate for tissue hypoxia and its clearance predicts mortality. Triage glucose measurements have been shown to be specific in predicting major injuries. No vital sign has yet to be proven effective as an independent predictor of trauma severity. Point of care (POC) devices allow for rapid results, easy sample preparation and processing, small sample volumes, small footprint, multifunctional analysis, and low cost. Advances in the field of in-vivo biosensors has provided a much needed platform by which trauma related metabolites can be monitored easily, rapidly and continuously. Multi-analyte monitoring biosensors have the potential to explore areas still undiscovered in the realm of trauma physiology.


Monitoring Shock Trauma Hemorrhage Diagnostics 



This work was supported by the US Department of Defense (DoDPRMRP) grant PR023081/DAMD17-03-1-0172, by the Consortium of the Clemson University Center for Bioelectronics, Biosensors and Biochips (C3B) and by ABTECH Scientific, Inc.


  1. M.C. Aboudara, F.P. Hurst, K.C. Abbott, R.M. Perkins, Hyperkalemia after packed red blood cell transfusion in trauma patients. J. Trauma 64(2), S86–S91 (2008)CrossRefGoogle Scholar
  2. S. Abraham, S. Brahim, K. Ishihara, A. Guiseppi-Elie, Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility. Biomaterials 26, 4767–4778 (2005)CrossRefGoogle Scholar
  3. D. Abramson, T.M. Scalea, R. Hitchcock, S.Z. Trooskin, S.M. Henry, J. Greenspan, Lactate clearance and survival following injury. J. Trauma 35(4), 584–589 (1993)CrossRefGoogle Scholar
  4. M. Antonelli, M. Levy, P.J. Andrews, J. Chastre, L.D. Hudson, C. Manthous et al., Hemodynamic monitoring in shock and implications for management. International Consensus Conference, Paris, France, 27–28 April 2006. Intensive Care Med. 33(4), 575–90 (2007). Epub 2007/02/08Google Scholar
  5. K.Y. Au-Yeung, T. Robertson, H. Hafezi, G. Moon, L. DiCarlo, M. Zdeblick et al. (eds.), A networked system for self-management of drug therapy and wellness. Wireless Health 2010. ACM. (2010)Google Scholar
  6. S.P. Baker, B. O'Neill, W.J. Haddon, W.B. Long, The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J. Trauma 14(3), 187–196 (1974)CrossRefGoogle Scholar
  7. P. Barriot, B. Riou, Hemorrhagic shock with paradoxical bradycardia. Intensive Care Med. 13(3), 203–207 (1987)CrossRefGoogle Scholar
  8. G. Beilman, J. Blondet, Near-infrared spectroscopy-derived tissue oxygen saturation in battlefield injuries: a case series report. World J. Emerg. Surg. 4(1), 25 (2009)CrossRefGoogle Scholar
  9. J. Boldt, B. Kumle, S. Suttner, G. Haisch, Point-of-care (POC) testing of lactate in the intensive care patient. Acta Anaesthesiol. Scand. 45(2), 194–199 (2001)CrossRefGoogle Scholar
  10. F.B. Bolger, S.B. McHugh, R. Bennett, J. Li, K. Ishiwari, J. Francois et al., Characterisation of carbon paste electrodes for real-time amperometric monitoring of brain tissue oxygen. J. Neurosci. Methods 195(2), 135–142 (2011)CrossRefGoogle Scholar
  11. R.F. Bond, H.D. Green, Peripheral circulation, in Handbook of Shock and Trauma Volume 1/Basic Science, ed. by M. Burton, A.M.L. Altura, W. Schumer (Raven, New York, 1983), pp. 29–49Google Scholar
  12. A. Bonen, K.J.A. McCullagh, Effects of exercise on lactate transport into mouse skeletal muscles. Can. J. Appl. Physiol. 19(3), 275–285 (1994)CrossRefGoogle Scholar
  13. S. Brahim, D. Narinesingh, A. Guiseppi-Elie, Bio-smart materials: kinetics of immobilized enzymes in p(HEMA)/p(pyrrole) hydrogels in amperometric biosensors. Macromolecular Symposia. 186, 63–73 (2002)CrossRefGoogle Scholar
  14. R.G. Branco, A. Chavan, R.C. Tasker, Pilot evaluation of continuous subcutaneous glucose monitoring in children with multiple organ dysfunction syndrome*. Pediatr. Crit. Care Med. 11(3), 415 (2010)Google Scholar
  15. K.J. Brasel, C. Guse, L.M. Gentilello, R. Nirula, Heart rate: is It truly a vital sign? J. Trauma 62(4), 812–817 (2007)CrossRefGoogle Scholar
  16. B. Bruns, L. Gentilello, A. Elliott, S. Shafi, Prehospital hypotension redefined. J. Trauma 65(6), 1217–1221 (2008)CrossRefGoogle Scholar
  17. H.F. Bunn, M.H. May, W.F. Kocholaty, C.E. Shields, Hemoglobin function in stored blood. J. Clin. Invest. 48(2), 311 (1969)CrossRefGoogle Scholar
  18. G. Calia, G. Rocchitta, R. Migheli, G. Puggioni, Y. Spissu, G. Bazzu et al., Biotelemetric monitoring of brain neurochemistry in conscious rats using microsensors and biosensors. Sensors. 9(4), 2511–2523 (2009)CrossRefGoogle Scholar
  19. D.W. Callaway, N.I. Shapiro, M.W. Donnino, C. Baker, C.L. Rosen, Serum lactate and base deficit as predictors of mortality in normotensive elderly blunt trauma patients. J. Trauma 66(4), 1040–1044 (2009)CrossRefGoogle Scholar
  20. C. Cambier, M. Wierinckx, T. Clerbaux, B. Detry, M.P. Liardet, V. Marville et al., Haemoglobin oxygen affinity and regulating factors of the blood oxygen transport in canine and feline blood. Res. Vet. Sci. 77(1), 83–88 (2004)CrossRefGoogle Scholar
  21. L.C. Carey, B.D. Lowery, C.T. Cloutier, Blood sugar and insulin response of humans in shock. Ann. Surg. 172(3), 342–350 (1970)CrossRefGoogle Scholar
  22. S. Carrara, S. Ghoreishizadeh, J. Olivo, I. Taurino, C. Baj-Rossi, A. Cavallini et al., Fully integrated biochip platforms for advanced healthcare. Sensors. 12(8), 11013–11060 (2012)CrossRefGoogle Scholar
  23. L. Chawla, A. Nader, T. Nelson, T. Govindji, R. Wilson, S. Szlyk et al., Utilization of base deficit and reliability of base deficit as a surrogate for serum lactate in the peri-operative setting. BMC Anesthesiol. 10(1), 16 (2010)CrossRefGoogle Scholar
  24. Z. Chen, Q. Li, O. Li, X. Zhou, Y. Lan, Y. Wei et al., A thin cover glass chip for contactless conductivity detection in microchip capillary electrophoresis. Talanta 71(5), 1944–1950 (2007)CrossRefGoogle Scholar
  25. J.H. Cheong, S.S.Y. Ng, X. Liu, R.F. Xue, H.J. Lim, P.B. Khannur et al., An inductively powered implantable blood flow sensor microsystem for vascular grafts. Biomed. Eng. IEEE Transactions 59(9), 2466–2475 (2012)CrossRefGoogle Scholar
  26. H. Clusmann, C. Schaller, J. Schramm, Fixed and dilated pupils after trauma, stroke, and previous intracranial surgery: management and outcome. J. Neurol. Neurosurg. Psychiatry 71(2), 175–181 (2001)CrossRefGoogle Scholar
  27. M.N. Cocchi, E. Kimlin, M. Walsh, M.W. Donnino, Identification and resuscitation of the trauma patient in shock. Emerg. Med. Clin. North Am. 25(3), 623–642 (2007)CrossRefGoogle Scholar
  28. S.M. Cohn, B.A. Crookes, K.G. Proctor, Near-infrared spectroscopy in resuscitation. J. Trauma 54(5), S199–S202 (2003)Google Scholar
  29. S. Cohn, A. Nathens, F. Moore, P. Rhee, J. Puyana, E. Moore et al., Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation. J. Trauma 62(1), 44–54 (2007)CrossRefGoogle Scholar
  30. S.M. Cohn, R.G. Pearl, S.M. Acosta, M.U. Nowlin, A. Hernandez, C. Guta et al., A prospective randomized pilot study of near-infrared spectroscopy-directed restricted fluid therapy versus standard fluid therapy in patients undergoing elective colorectal surgery. Am. Surg. 76, 1384–1392 (2010)Google Scholar
  31. Committee on Trauma, Chicago: American College of Surgeons. 103–12 p (1997)Google Scholar
  32. A. Corstjens, J. Ligtenberg, I. van der Horst, R. Spanjersberg, J. Lind, J. Tulleken et al., Accuracy and feasibility of point-of-care and continuous blood glucose analysis in critically ill ICU patients. Crit. Care 10(5), R135 (2006)CrossRefGoogle Scholar
  33. P.C. Crepaldi, T.C. Pimenta, R.L. Moreno, E.C. Rodriguez, A low power CMOS voltage regulator for a wireless blood pressure biosensor. Instrum. Meas. IEEE Trans. 61(3), 729–739 (2012)CrossRefGoogle Scholar
  34. C.D. Critchell, V. Savarese, A. Callahan, C. Aboud, S. Jabbour, P. Marik, Accuracy of bedside capillary blood glucose measurements in critically ill patients. Intensive Care Med. 33(12), 2079–2084 (2007)CrossRefGoogle Scholar
  35. B.A. Crookes, S.M. Cohn, S. Bloch, J. Amortegui, R. Manning, P. Li et al., Can near-infrared spectroscopy identify the severity of shock in trauma patients? J. Trauma 58(4), 806–816 (2005)CrossRefGoogle Scholar
  36. J.A.G. Cropp, Changes in blood and plasma volumes during growth. J. Pediatr. 78(2), 220–229 (1971)CrossRefGoogle Scholar
  37. J. Davis, K. Kaups, S. Parks, Base deficit is superior to pH in evaluating clearance of acidosis after traumatic shock. JTrauma. 44(1), 114–118 (1998)Google Scholar
  38. D. De Backer, J. Creteur, J.-C. Preiser, M.-J. Dubois, J.-L. Vincent, Microvascular blood flow is altered in patients with sepsis. Am. J. Respir. Crit. Care Med. 166(1), 98–104 (2002)CrossRefGoogle Scholar
  39. R.P. Dutton, Current concepts in hemorrhagic shock. Anesthesiol. Clin. 25(1), 23–34 (2007)CrossRefGoogle Scholar
  40. R.P. Dutton, L.G. Stansbury, S. Leone, E. Kramer, J.R. Hess, T.M. Scalea, Trauma mortality in mature trauma systems: are we doing better? An analysis of trauma mortality patterns, 1997–2008. J. Trauma 69(3), 620–626 (2010)CrossRefGoogle Scholar
  41. B.J. Eastridge, J. Salinas, J.G. McManus, L. Blackburn, E.M. Bugler, W.H. Cooke et al., Hypotension begins at 110 mm Hg: redefining “hypotension” with data. J. Trauma 63(2), 291–299 (2007)CrossRefGoogle Scholar
  42. D.A. Edelman, M.T. White, J.G. Tyburski, R.F. Wilson, Post-traumatic hypotension: should systolic blood pressure of 90–109 mmHg be included? Shock (Augusta, Ga) 27(2), 134–138 (2007)CrossRefGoogle Scholar
  43. A. Fuse, The role of skeletal muscle and liver on lactate metabolism during hypoxia in rats. J. Anesth. 13(3), 161–165 (1999)CrossRefGoogle Scholar
  44. M. Goyal, J.M. Pines, B.C. Drumheller, D.F. Gaieski, Point-of-care testing at triage decreases time to lactate level in septic patients. J. Emerg. Med. 38(5), 578–581 (2010)CrossRefGoogle Scholar
  45. M. Guenther, G. Gerlach, T. Wallmersperger, M.N. Avula, S.H. Cho, X. Xie et al., Smart hydrogel-based biochemical microsensor array for medical diagnostics. Adv. Sci. Technol. 85, 47–52 (2013)CrossRefGoogle Scholar
  46. A. Guiseppi-Elie, An implantable biochip to influence patient outcomes following trauma-induced hemorrhage. Anal. Bioanal. Chem. 399(1), 403–419 (2011)CrossRefGoogle Scholar
  47. A. Guiseppi-Elie, N.F. Sheppard Jr, (eds.), Conferring Biospecificity to Electroconductive Polymer-Based Biosensor Devices. ACS Northeast Regional Meeting (NERM); 1995 October 22–25; Rochester, NYGoogle Scholar
  48. A. Guiseppi-Elie, S. Brahim, G. Slaughter, K.R. Ward, Design of a subcutaneous implantable biochip for monitoring of glucose and lactate. Sensors Journal, IEEE. 5(3), 345–355 (2005)CrossRefGoogle Scholar
  49. G. Gutierrez, H.D. Reines, M. Wulf-Gutierrez, Clinical review: hemorrhagic shock. Crit. Care 8(5), 373–381 (2004)CrossRefGoogle Scholar
  50. A. Hagiwara, A. Kimura, H. Kato, Y. Mizushima, T. Matsuoka, M. Takeda et al., Hemodynamic reactions in patients with hemorrhagic shock from blunt trauma after initial fluid therapy. J. Trauma 69(5), 1161–1168 (2010)CrossRefGoogle Scholar
  51. D. Häussinger, W. Gerok, E. Roth, F. Lang, Cellular hydration state: an important determinant of protein catabolism in health and disease. Lancet 341(8856), 1330–1332 (1993)CrossRefGoogle Scholar
  52. T.R. Hobbs, J.P. O'Malley, S. Khouangsathiene, C.J. Dubay, Comparison of lactate, base excess, bicarbonate, and pH as predictors of mortality after severe trauma in rhesus macaques (Macaca mulatta). Comp. Med. 60(3), 233–239 (2010)Google Scholar
  53. J.N. Howell, G. Chleboun, R. Conatser, Muscle stiffness, strength loss, swelling and soreness following exercise-induced injury in humans. J. Physiol. 464(1), 183–196 (1993)Google Scholar
  54. F.A. Husain, M.J. Martin, P.S. Mullenix, S.R. Steele, D.C. Elliott, Serum lactate and base deficit as predictors of mortality and morbidity. Am. J. Surg. 185(5), 485–491 (2003)CrossRefGoogle Scholar
  55. H.T. Huynh, Y. Won (eds.), Hematocrit Estimation from Compact Single Hidden Layer Feedforward Neural Networks Trained by Evolutionary Algorithm. Evolutionary Computation, 2008 CEC 2008(IEEE World Congress on Computational Intelligence) IEEE Congress on; (2008): IEEEGoogle Scholar
  56. R. Ichapurapu, S. Jain, M.U. Kakade, D.Y.C. Lie, R.E. Banister (eds), A 2.4 GHz Non-Contact Biosensor System for Continuous Vital-Signs Monitoring on a Single PCB. ASIC, 2009 ASICON’09 IEEE 8th International Conference on; (2009): IEEEGoogle Scholar
  57. K.K. Jain, B. Fisher, Oxygen uptake, transport and utilizationin the human body, in Oxygen in physiology and medicine, ed. by K.K. Jain, B. Fischer (Charles C Thomas Pub Ltd, Springfield, 1989), pp. 25–53. 367Google Scholar
  58. Jamal M, Sensor and biosensor to detect vascular graft infection: diagnosis and challenges. Anal. Methods. (2012)Google Scholar
  59. G. Justin, A. Guiseppi-Elie, Electroconductive blends of poly (HEMA-co-PEGMA-co-HMMAco-SPMA) and poly (Py-co-PyBA): in vitro biocompatibility. J. Bioact. Compatible Polym. 25(2), 121–140 (2010)CrossRefGoogle Scholar
  60. B.S. Karon, R. Scott, M.F. Burritt, P.J. Santrach, Comparison of lactate values between point-of-care and central laboratory analyzers. Am. J. Clin. Pathol. 128(1), 168–171 (2007)CrossRefGoogle Scholar
  61. H. Kasuya, H. Onda, T. Yoneyama, T. Sasaki, T. Hori, Bedside monitoring of circulating blood volume after subarachnoid hemorrhage. Stroke 34(4), 956–960 (2003)CrossRefGoogle Scholar
  62. K. Kaups, J. Davis, W. Dominic, Base deficit as an indicator or resuscitation needs in patients with burn injuries. JBurn Care Rehabil. 19(4), 346–348 (1998)CrossRefGoogle Scholar
  63. D.R. Kostreva, A. Castaner, D.H. Pedersen, J.P. Kampine, Nonvagally mediated bradycardia during cardiac tamponade or severe hemorrhage. Cardiology 68(2), 65–79 (1981)CrossRefGoogle Scholar
  64. C.N. Kotanen, C. Tlili, A. Guiseppi-Elie, Amperometric glucose biosensor based on electroconductive hydrogels. Talanta. (2012)Google Scholar
  65. C.N. Kotanen, A. Guiseppi–Elie (eds.), Bioactive Electroconductive Hydrogels Yield Novel Biotransducers for Glucose. Macromolecular Symposia. Wiley Online Library (2012)Google Scholar
  66. C.N. Kotanen, C. Tlili, A. Guiseppi-Elie, Bioactive electroconductive hydrogels: the effects of electropolymerization charge density on the storage stability of an enzyme-based biosensor. Appl. Biochem. Biotechnol. 1–11 (2012)Google Scholar
  67. C.N. Kotanen, F.G. Moussy, S. Carrara, A. Guiseppi-Elie, Implantable enzyme amperometric biosensors. Biosens. Bioelectron. 35(1), 14–26 (2012d)CrossRefGoogle Scholar
  68. P. Labroo, Y. Cui, Flexible graphene bio-nanosensor for lactate. Biosens Bioelectronics. (2012)Google Scholar
  69. T. Lacara, C. Domagtoy, D. Lickliter, K. Quattrocchi, L. Snipes, J. Kuszaj et al., Comparison of point-of-care and laboratory glucose analysis in critically Ill patients. Am. J. Crit. Care 16(4), 336–346 (2007)Google Scholar
  70. M.P. Lange, M.S. Dahn, L.A. Jacobs, The significance of hyperglycemia after injury. Heart Lung 14(5), 470–472 (1985). Epub 1985/09/01Google Scholar
  71. J.H. Lee, K. Kim, Y.H. Jo, J.E. Rhee, J.C. Lee, K.S. Kim et al., Feasibility of continuous glucose monitoring in critically Ill emergency department patients. J. Emerg. Med. (2011)Google Scholar
  72. B. Levy, Lactic acidosis and hyperlactatemia, in Yearbook of Intensive Care and Emergency Medicine, ed. by J.-L. Vincent (Springer, Berlin, 2006), pp. 88–98CrossRefGoogle Scholar
  73. L. Li, L.H. Thompson, L. Zhao, J.L. Messina, Tissue-Specific Difference in the Molecular Mechanisms for the Development of Acute Insulin Resistance after Injury. Endocrinology 150(1), 24–32 (2009)CrossRefGoogle Scholar
  74. G. Lin, S. Chang, H. Hao, P. Tathireddy, M. Orthner, J. Magda et al., Osmotic swelling pressure response of smart hydrogels suitable for chronically implantable glucose sensors. Sensors and Actuators B: Chemical. 144(1), 332–336 (2010)CrossRefGoogle Scholar
  75. R.F. Louie, Z. Tang, D.G. Shelby, G.J. Kost, Point-of-care testing: millennium technology for critical care. Lab Medicine. 31(7), 402–408 (2000)CrossRefGoogle Scholar
  76. R.B. Low, D. Martin, Accuracy of blood pressure measurements made aboard helicopters. Ann. Emerg. Med. 17(6), 604–612 (1988)CrossRefGoogle Scholar
  77. Y. Ma, B. Toth, A.B. Keeton, L.T. Holland, I.H. Chaudry, J.L. Messina, Mechanisms of Hemorrhage-Induced Hepatic Insulin Resistance: Role of Tumor Necrosis Factor-α. Endocrinology 145(11), 5168–5176 (2004)CrossRefGoogle Scholar
  78. A. Martinez, S. Schoenig, D. Andresen, S. Warren (ed.), Ingestible Pill for Heart Rate and Core Temperature Measurement in Cattle. Engineering in Medicine and Biology Society, 2006 EMBS’06 28th Annual International Conference of the IEEE; 2006: IEEEGoogle Scholar
  79. S.P. McGrath, K.L. Ryan, S.M. Wendelken, C.A. Rickards, V.A. Convertino, Pulse oximeter plethysmographic waveform changes in awake, spontaneously breathing, hypovolemic volunteers. Anesth. Analg. 112(2), 368–374 (2011)CrossRefGoogle Scholar
  80. J.J. McNamara, M. Molot, J.F. Stremple, H.K. Sleeman, Hyperglycemic response to trauma in combat casualties. J. Trauma 11(4), 337–339 (1971)CrossRefGoogle Scholar
  81. A. Mittal, F. Göke, R. Flint, B.P.T. Loveday, N. Thompson, B. Delahunt et al., The redox status of experimental hemorrhagic shock as measured by cyclic voltammetry. Shock 33(5), 460–466 (2010)Google Scholar
  82. B.A. Mizock, J.L. Falk, Lactic acidosis in critical illness. Crit. Care Med. 20(1), 80–93 (1992)CrossRefGoogle Scholar
  83. NCHS, NCHS Data on Injuries. August 2009 ed: National Center for Health Statistics; (2009)Google Scholar
  84. B. ÖBerg, P. Thorén, C 4: increased activity in Vagal Cardiac afferents correlated to the appearance of reflex bradycardia during severe hemorrhage in cats. Acta Physiol. Scand. 80, 22A–23A (1970)CrossRefGoogle Scholar
  85. C. Okuda, T. Sawa, M. Harada, T. Murakami, T. Matsuda, Y. Tanaka, Lactate in rat skeletal muscle after hemorrhage measured by microdialysis probe calibrated in situ. American Journal of Physiology - Endocrinology And Metabolism. 263(6), E1035–E1039 (2006)Google Scholar
  86. J. Olivo, S. Carrara, G. De Micheli (eds.), IronIC Patch: A Wearable Device for the Remote Powering and Connectivity of Implantable Systems. Instrumentation and Measurement Technology Conference (I2MTC), 2012 IEEE International. 13–16 (2012) May 2012Google Scholar
  87. I. Pais, M. Hallschmid, K. Jauch-Chara, S.M. Schmid, K.M. Oltmanns, A. Peters et al., Mood and cognitive functions during acute euglycaemia and mild hyperglycaemia in type 2 diabetic patients. Exp. Clin. Endocrinol. Diabetes 115(01), 42,6 (2007)CrossRefGoogle Scholar
  88. L. Paladino, R. Sinert, D. Wallace, T. Anderson, K. Yadav, S. Zehtabchi, The utility of base deficit and arterial lactate in differentiating major from minor injury in trauma patients with normal vital signs. Resuscitation 77(3), 363–368 (2008)CrossRefGoogle Scholar
  89. L. Paladino, R.A. Subramanian, S. Nabors, S. Bhardwaj, R. Sinert, Triage hyperglycemia as a prognostic indicator of major trauma. J. Trauma 69(1), 41–45 (2010)CrossRefGoogle Scholar
  90. N.A. Paradis, S. Balter, C.M. Davison, G. Simon, M. Rose, Hematocrit as a predictor of significant injury after penetrating trauma. Am. J. Emerg. Med. 15(3), 224–228 (1997)CrossRefGoogle Scholar
  91. R.M. Perkins, M.C. Aboudara, K.C. Abbott, J.B. Holcomb, Resuscitative hyperkalemia in noncrush trauma: a prospective, observational study. Clin. J. Am. Soc. Nephrol. 2(2), 313–319 (2007)CrossRefGoogle Scholar
  92. R.N. Pittman, Regulation of Tissue Oxygenation (Morgan & Claypool Life Sciences, San Rafael, 2011) [cited 2013 January 13]Google Scholar
  93. N.H. Prasad, L.H. Brown, S.C. Ausband, O. Cooper-Spruill, R.G. Carroll, T.W. Whitley, Prehospital blood pressures: inaccuracies caused by ambulance noise? Am. J. Emerg. Med. 12(6), 617–620 (1994)CrossRefGoogle Scholar
  94. M. Pumera, J. Wang, F. Opekar, I. Jelínek, J. Feldman, H. Löwe et al., Contactless conductivity detector for microchip capillary electrophoresis. Anal. Chem. 74(9), 1968–1971 (2002)CrossRefGoogle Scholar
  95. A.R. Rahman, G. Justin, A. Guiseppi-Elie, Towards an implantable biochip for glucose and lactate monitoring using micro-disc electrode arrays (MDEAs). Biomed. Microdevices: BioMEMS and Biomedical NanoTechnology Biomedical Microdevices 11(1), 75–85 (2009)CrossRefGoogle Scholar
  96. J.B. Rezende-Neto, S.B. Rizoli, M.V. Andrade, T.A. Lisboa, J.R. Cunha-Melo, Rabbit model of uncontrolled hemorrhagic shock and hypotensive resuscitation. Braz. J. Med. Biol. Res. = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al.]. 43(12), 1153–9 (2010)Google Scholar
  97. P. Rhee, L. Langdale, C. Mock, L. Gentilello, Near-infrared spectroscopy: continuous measurement of cytochrome oxidation during hemorrhagic shock. Crit. Care Med. 25(1), 166–170 (1997)CrossRefGoogle Scholar
  98. D. Rixen, M. Raum, B. Bouillon, R. Lefering, E. Neugebauer, Base deficit development and its prognostic significance in posttrauma critical illness: an analysis by the trauma registry of the Deutsche Gesellschaft fur unfallchirurgie. Shock 15(2), 83–89 (2001)CrossRefGoogle Scholar
  99. J.A. Rocha Filho, R.S. Nani, L.A.C. D'Albuquerque, L.M.S. Malbouisson, M.J.C. Carmona, M. Rocha-e-Silva et al., Potassium in hemorrhagic shock: a potential marker of tissue hypoxia. J. Trauma 68(6), 1335–1341 (2010)CrossRefGoogle Scholar
  100. Z.M. Rong, E. Leitao, J. Popplewell, B. Alp, P. Vadgama, Needle enzyme electrode for lactate measurement in vivo. Ieee Sensors Journal. 8(1–2), 113–120 (2008)CrossRefGoogle Scholar
  101. P. Salazar, M. Martín, R. O’Neill, R. Roche, J. González-Mora, Biosensors based on Prussian blue modified carbon fibers electrodes for monitoring lactate in the extracellular space of brain tissue. Int J Electrochem. Sci. 7, 5910–5926 (2012)Google Scholar
  102. J. Salinas, R. Nguyen, M.I. Darrah, G.A. Kramer, M.L. Serio-Melvin, E.A. Mann et al., Advanced monitoring and decision support for battlefield critical care environment. US Army Med. Dept. J. 73–81 (2011). Epub 2011/05/25Google Scholar
  103. K. Sander-Jensen, N.H. Secher, P. Bie, J. Warberg, T.W. Schwartz, Vagal slowing of the heart during haemorrhage: observations from 20 consecutive hypotensive patients. Br. Med. J. (Clin. Res. Ed) 292(6517), 364–366 (1986)CrossRefGoogle Scholar
  104. S.M. Sasser, R.C. Hunt, E.E. Sullivent, M.M. Wald, J. Mitchko, G.J. Jurkovich et al., Guidelines for field triage of injured patients recommendations of the national expert panel on field triage. Morb. Mortal. Wkly. Rep. 58(RR1, Suppl. S), 1–35 (2009)Google Scholar
  105. T. Sato, Y. Kamiyama, T. Kamano, J. Rutkowski, R. Cowley, B. Trump et al., Pathophysiology of hemorrhagic shock. Virchows Archiv B Cell Pathology Zell-pathologie. 48(1), 361–375 (1985)CrossRefGoogle Scholar
  106. T.M. Scalea, M. Holman, M. Fuortes, B.J. Baron, T.F. Phillips, A.S. Goldstein et al., Central venous blood oxygen saturation: an early, accurate measurement of volume during hemorrhage. J. Trauma 28(6), 725–732 (1988)CrossRefGoogle Scholar
  107. M.J. Seamon, C. Feather, B.P. Smith, H. Kulp, J.P. Gaughan, A.J. Goldberg, Just one drop: the significance of a single hypotensive blood pressure reading during trauma resuscitations. J. Trauma 68(6), 1289–1295 (2010)CrossRefGoogle Scholar
  108. N.H. Secher, P. Bie, Bradycardia during reversible haemorrhagic shock - a forgotten observation? Clin. Physiol. 5(4), 315–323 (1985)CrossRefGoogle Scholar
  109. N.H. Secher, K. Sander Jensen, C. Werner, J. Warberg, P. Bie, Bradycardia during severe but reversible hypovolemic shock in man. Circ. Shock 14(4), 267–274 (1984)Google Scholar
  110. O. Siggaard-Andersen, An acid–base chart for arterial blood with normal and pathophysiological reference areas. Scand. J. Clin. Lab. Invest. 27(3), 239–245 (1971)CrossRefGoogle Scholar
  111. S. Simonson, K. Welty-Wolf, Y. Huang, J. Griebel, M. Caplan, P. Fracica et al., Altered mitochondrial redox responses in gram negative septic shock in primates. Circ. Shock 43(1), 34–43 (1994)Google Scholar
  112. R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt et al., Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12), 2091–2104 (2008)CrossRefGoogle Scholar
  113. T. SjÖStrand, Circulatory Control via Vagal Afferents VI. The bleeding bradycardia in the rat, its elicitation and relation to the release of vasopressin. Acta Physiol. Scand. 89(1), 39–50 (1973)CrossRefGoogle Scholar
  114. H.S. Snyder, Significance of the initial spun hematocrit in trauma patients. Am. J. Emerg. Med. 16(2), 150–153 (1998)CrossRefGoogle Scholar
  115. A. Spehar-Deleze, S. Anastasova, J. Popplewell, P. Vadgama (eds.), Extreme Physiological State: Development of Tissue Lactate Sensor. Wearable and Implantable Body Sensor Networks (BSN), 2012 Ninth International Conference on; (2012): IEEEGoogle Scholar
  116. B.W. Starnes, A.C. Beekley, J.A. Sebesta, C.A. Andersen, R.M.J. Rush, Extremity vascular injuries on the battlefield: tips for surgeons deploying to war. J. Trauma 60(2), 432–442 (2006)CrossRefGoogle Scholar
  117. J.H. Taylor, K.E. Mulier, D. Myers, G.J. Beilman, Use of near-infrared spectroscopy in early determination of irreversible hemorrhagic shock. J. Trauma 57(2), 438 (2004)CrossRefGoogle Scholar
  118. J.R. Terkildsen, E.J. Crampin, N.P. Smith, The balance between inactivation and activation of the Na + −K + pump underlies the triphasic accumulation of extracellular K + during myocardial ischemia. Am. J. Physiol. Heart Circ. Physiol. 293(5), H3036–H3045 (2007)CrossRefGoogle Scholar
  119. A. Thorell, J. Nygren, O. Ljungqvist, Insulin resistance: a marker of surgical stress. Curr. Opin. Clin. Nutr. Metab. Care 2(1), 69–78 (1999)CrossRefGoogle Scholar
  120. S. Tierney, S. Volden, B.T. Stokke, Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform. Biosens. Bioelectron. 24(7), 2034–2039 (2009)CrossRefGoogle Scholar
  121. L.N. Torres, I.P.T. Filho, R.W. Barbee, M.H. Tiba, K.R. Ward, R.N. Pittman, Systemic responses to prolonged hemorrhagic hypotension. Am. J. Physiol. Heart Circ. Physiol. 286(5), H1811–H1820 (2004)CrossRefGoogle Scholar
  122. D. Trebbels, R. Zengerle, D. Hradetzky, Hematocrit measurement - a high precision on-line measurement system based on impedance spectroscopy for use in hemodialysis machines, in World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, ed. by O. Dössel, W.C. Schlegel (Springer Berlin Heidelberg, Munich, 2009), pp. 247–250CrossRefGoogle Scholar
  123. E.F. Treo, C.J. Felice, M.C. Tirado, M.E. Valentinuzzi, D.O. Cervantes, Hematocrit measurement by dielectric spectroscopy. Biomed Eng IEEE Trans. 52(1), 124–127 (2005)CrossRefGoogle Scholar
  124. D.D. Trunkey, Overview of trauma. Surg. Clin. North Am. 62(1), 3–7 (1982)Google Scholar
  125. J. Trzebinski, S. Sharma, A.R.B. Moniz, K. Michelakis, Y. Zhang, A.E.G. Cass, Microfluidic device to investigate factors affecting performance in biosensors designed for transdermal applications. Lab Chip 12(2), 348–352 (2012)CrossRefGoogle Scholar
  126. M.J. Vandromme, R.L. Griffin, J.A. Weinberg, L.W. Rue, J.D. Kerby, Lactate is a better predictor than systolic blood pressure for determining blood requirement and mortality: could prehospital measures improve trauma triage? J. Am. Coll. Surg. 210(5), 861–867 (2010)CrossRefGoogle Scholar
  127. C. Veliz, H. Montgomery, R. Kotwal, Ranger first responder and the evolution of tactical combat casualty care. J. Spec. Operations Medicine: A Peer Reviewed Journal for SOF Medical Professionals 10(3), 90–91 (2010)Google Scholar
  128. O. Victor, S. Bondini, M. Raisa, Blood presure monitoring using programmable system on chip. (2012)Google Scholar
  129. G.P. Victorino, F.D. Battistella, D.H. Wisner, Does tachycardia correlate with hypotension after trauma? J. Am. Coll. Surg. 196(5), 679–684 (2003)CrossRefGoogle Scholar
  130. P. Wacharasint, T.A. Nakada, J.H. Boyd, J.A. Russell, K.R. Walley, Normal-range blood lactate concentration in septic shock is prognostic and predictive. Shock 38(1), 4–10 (2012)CrossRefGoogle Scholar
  131. K.R. Ward, R.R. Ivatury, R.W. Barbee, J. Terner, R. Pittman, I.P.T. Filho et al., Near infrared spectroscopy for evaluation of the trauma patient: a technology review. Resuscitation 68(1), 27–44 (2006)CrossRefGoogle Scholar
  132. S. Warren, A. Martinez, T. Sobering, D. Andresen (eds.), Electrocardiographic Pill for Cattle Heart Rate Determination. Engineering in Medicine and Biology Society, 2008 EMBS 2008 30th Annual International Conference of the IEEE; 2008: IEEEGoogle Scholar
  133. G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20(12), 2388–2403 (2005)CrossRefGoogle Scholar
  134. H.A. Wolpert, Continuous Glucose Monitoring — Coming of Age. N. Engl. J. Med. 363(4), 383–384 (2010)CrossRefGoogle Scholar
  135. J. Xu, H.T. Kim, Y. Ma, L. Zhao, L. Zhai, N. Kokorina et al., Trauma and Hemorrhage-Induced Acute Hepatic Insulin Resistance: Dominant Role of Tumor Necrosis Factor-α. Endocrinology 149(5), 2369–2382 (2008)CrossRefGoogle Scholar
  136. C.P. Yeo, A. Ngo, W.Y. Ng, S.H. Lim, Assessing performance of i-STAT at the point of care in the Emergency Room. Proc Singap Healthc. Volume 20(3), (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christian N. Kotanen
    • 1
    • 3
  • Anthony Guiseppi-Elie
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Center for Bioelectronics, Biosensors and Biochips (C3B)Clemson University Advanced Materials CenterAndersonUSA
  2. 2.Department of Chemical and Biomolecular EngineeringClemson UniversityClemsonUSA
  3. 3.Department of BioengineeringClemson UniversityClemsonUSA
  4. 4.Department of Electrical and Computer EngineeringClemson UniversityClemsonUSA
  5. 5.ABTECH Scientific, Inc.RichmondUSA

Personalised recommendations