Biomedical Microdevices

, Volume 15, Issue 2, pp 289–297 | Cite as

Patterning of microspheres and microbubbles in an acoustic tweezers

  • A. L. Bernassau
  • P. G. A. MacPherson
  • J. Beeley
  • B. W. Drinkwater
  • D. R. S. Cumming


We describe the construction of an ultrasonic device capable of micro-patterning a range of microscopic particles for bioengineering applications such as targeted drug delivery. The device is formed from seven ultrasonic transducers positioned around a heptagonal cavity. By exciting two or three transducers simultaneously, lines or hexagonal shapes can be formed with microspheres, emulsions and microbubbles. Furthermore, phase control of the transducers allows patterning at any desired position in a controlled manner. The paper discusses in detail direct positioning of functionalised microspheres, emulsions and microbubbles. With the advantages of miniaturization, rapid and simple fabrication, ultrasonic tweezers is a potentially useful tool in many biomedical applications.


Acoustic radiation pressure Particle patterning 2D particle manipulation Sonotweezers 



The authors thank the Sonotweezers project partners at the Universities of Bristol, Southampton and Dundee for their support and assistance in this research.


  1. A. Ashkin, J.M. Dziedzic, T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams. Nature 330(6150), 769–771 (1987)CrossRefGoogle Scholar
  2. L. Benguigui, I.J. Lin, Phenomenological aspect of particle trapping by dielectrophoresis. J. Appl. Phys. 56(11), 3294–3297 (1984)CrossRefGoogle Scholar
  3. A.L. Bernassau, O. Chun-Kiat, M. Yong, P.G.A. Macpherson, C.R.P. Courtney, M. Riehle, B.W. Drinkwater, D.R.S. Cumming, Two-dimensional manipulation of micro particles by acoustic radiation pressure in a heptagon cell. IEEE Trans Ultrason Ferroelectrics Freq Contr 58(10), 2132–2138 (2011)CrossRefGoogle Scholar
  4. A. Bernassau, F. Gesellchen, P. MacPherson, M. Riehle, D. Cumming, Direct patterning of mammalian cells in an ultrasonic heptagon stencil. Biomedical Microdevices 14(3), 559–564 (2012)CrossRefGoogle Scholar
  5. S.H. Bloch, P.A. Dayton, K.W. Ferrara, Targeted imaging using ultrasound contrast agents. Progess and opportunities for clinical and research applications. IEEE Eng Med Biol Mag 23(5), 18–29 (2004)CrossRefGoogle Scholar
  6. C.R.P. Courtney, C.K. Ong, B.W. Drinkwater, A.L. Bernassau, P.D. Wilcox, D.R.S. Cumming, Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences. 468(2138), 337–360 (2012)Google Scholar
  7. S.S. Davis, C. Washington, P. West, L. Illum, G. Liversidge, L. Sternson, R. Kirsh, Lipid emulsions as drug delivery systems. Ann. N. Y. Acad. Sci. 507, 75–88 (1987)CrossRefGoogle Scholar
  8. P.A. Dayton, K.E. Morgan, A.L. Klibanov, G. Brandenburger, K.R. Nightingale, K.W. Ferrara, A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents. IEEE Trans Ultrason Ferroelectrics Freq Contr 44(6), 1264–1277 (1997)CrossRefGoogle Scholar
  9. S.M. Demos, H. Alkan-Onyuksel, B.J. Kane, K. Ramani, A. Nagaraj, R. Greene, M. Klegerman, D.D. McPherson, In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J. Am. Coll. Cardiol. 33(3), 867–875 (1999)CrossRefGoogle Scholar
  10. M. Fechheimer, J.F. Boylan, S. Parker, J.E. Sisken, G.L. Patel, S.G. Zimmer, Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc. Natl. Acad. Sci. 84(23), 8463–8467 (1987)CrossRefGoogle Scholar
  11. P. Glynne-Jones, R.J. Boltryk, N.R. Harris, A.W.J. Cranny, M. Hill, Mode-switching: A new technique for electronically varying the agglomeration position in an acoustic particle manipulator. Ultrasonics 50(1), 68–75 (2009)CrossRefGoogle Scholar
  12. D.G. Grier, A revolution in optical manipulation. Nature 424(6950), 810–816 (2003)CrossRefGoogle Scholar
  13. C.P. Jen, T.W. Chen, Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures. Biomed Microdevices 11(3), 597–607 (2009)CrossRefGoogle Scholar
  14. M.A. Jepson, M.A. Clark, B.H. Hirst, M cell targeting by lectins: a strategy for mucosal vaccination and drug delivery. Adv Drug Deliv Rev 56(4), 511–525 (2004)CrossRefGoogle Scholar
  15. C. Kim, J.H. Bang, Y.E. Kim, J.H. Lee, J.Y. Kang, Stable hydrodynamic trapping of hydrogel beads for on-chip differentiation analysis of encapsulated stem cells. ensor Actuator B Chem 166–167, 859–869 (2012)CrossRefGoogle Scholar
  16. A.L. Klibanov, M.S. Hughes, J.N. Marsh, C.S. Hall, J.G. Miller, J.H. Wible, G.H. Brandenburger, Targeting of ultrasound contrast material. An in vitro feasibility study. Acta Radiol Suppl 412, 113–120 (1997)Google Scholar
  17. T. Kozuka, T. Tuziuti, H. Mitome, T. Fukuda, Non-contact micromanipulation using an ultrasonic standing wave field. IEEE International Conference on Micro Electro Mechanical Systems - MEMS, pp. 435–440 (1996)Google Scholar
  18. D.D. Lasic, D. Papahadjopoulos (Eds.), Medical applications of liposomes. Elsevier (1998)Google Scholar
  19. T. Laurell, F. Petersson, A. Nilsson, Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 36(3), 492–506 (2007)CrossRefGoogle Scholar
  20. A.F. Lum, M.A. Borden, P.A. Dayton, D.E. Kruse, S.I. Simon, K.W. Ferrara, Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release 111(1–2), 128–134 (2006)CrossRefGoogle Scholar
  21. N. Markarian, M. Yeksel, B. Khusid, K. Farmer, A. Acrivos, Limitations on the scale of an electrode array for trapping particles in microfluidics by positive dielectrophoresis. Appl. Phys. Lett. 82(26), 4839–4841 (2003)CrossRefGoogle Scholar
  22. L. Meng, F. Cai, Q. Jin, L. Niu, C. Jiang, Z. Wang, J. Wu, H. Zheng, Acoustic aligning and trapping of microbubbles in an enclosed PDMS microfluidic device. Sensor Actuator B Chem 160(1), 1599–1605 (2011)CrossRefGoogle Scholar
  23. M. Nakano, Places of emulsions in drug delivery. Adv Drug Deliv Rev 45(1), 1–4 (2000)CrossRefGoogle Scholar
  24. B. Nemeth, M.D. Symes, A.G. Boulay, C. Busche, G.J.T. Cooper, D.R.S. Cumming, L. Cronin, Real-time ion-flux imaging in the growth of micrometer-scale structures and membranes. Adv. Mater. 24(9), 1238–1242 (2012)CrossRefGoogle Scholar
  25. J. Neumann, M. Hennig, A. Wixforth, S. Manus, J.O. Rädler, M.F. Schneider, Transport, separation, and accumulation of proteins on supported lipid bilayers. Nano Letters 10(8), 2903–2908 (2010)CrossRefGoogle Scholar
  26. R.D. O’Rorke, C.D. Wood, C. Walti, S.D. Evans, A.G. Davies, J.E. Cunningham, Acousto-microfluidics: transporting microbubble and microparticle arrays in acoustic traps using surface acoustic waves. J. Appl. Phys. 111(9), 094911–094918 (2012)CrossRefGoogle Scholar
  27. F. Petersson, A. Nilsson, C. Holm, H. Jonsson, T. Laurell, Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels. Analyst 129(10), 938–943 (2004)CrossRefGoogle Scholar
  28. C. Pichot, Surface-functionalized latexes for biotechnological applications. Curr Opin Colloid Interface Sci 9(3–4), 213–221 (2004)CrossRefGoogle Scholar
  29. R.D.O. Rorke, C.D. Wood, C. Wälti, S.D. Evans, A.G. Davies, J.E. Cunningham, Acousto-microfluidics: transporting microbubble and microparticle arrays in acoustic traps using surface acoustic waves. J. Appl. Phys. 111(9), 094911 (2012)CrossRefGoogle Scholar
  30. J. Shi, D. Ahmed, X. Mao, S.-C.S. Lin, A. Lawit, T.J. Huang, Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab on a Chip 9(20), 2890–2895 (2009)CrossRefGoogle Scholar
  31. R. Silva, H. Ferreira, A. Cavaco-Paulo, Sonoproduction of liposomes and protein particles as templates for delivery purposes. Biomacromolecules 12(10), 3353–3368 (2011)CrossRefGoogle Scholar
  32. R. Suzuki, Y. Oda, N. Utoguchi, K. Maruyama, Progress in the development of ultrasound-mediated gene delivery systems utilizing nano- and microbubbles. J Contr Release 149(1), 36–41 (2011)CrossRefGoogle Scholar
  33. S.B. Swastika, A.V. Siva, Behavior of a train of droplets in a fluidic network with hydrodynamic traps. Biomicrofluidics 4(4), 044110 (2010)CrossRefGoogle Scholar
  34. S.M. van der Meer, M. Versluis, D. Lohse, C.T. Chin, A. Bouakaz, N. de Jong, The resonance frequency of SonoVue & trade; as observed by high-speed optical imaging. IEEE Ultrason Symp 341, 343–345 (2004)Google Scholar
  35. C.D. Wood, J.E. Cunningham, R. O’Rorke, C. Walti, E.H. Linfield, A.G. Davies, S.D. Evans, Formation and manipulation of two-dimensional arrays of micron-scale particles in microfluidic systems by surface acoustic waves. Appl. Phys. Lett. 94(5), 054101–054103 (2009)CrossRefGoogle Scholar
  36. J. Wu, W.L. Nyborg, Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliv Rev 60(10), 1103–1116 (2008)CrossRefGoogle Scholar
  37. J. Wu, D. Chen, J. Pepe, B.E. Himberg, M. RicÅ, Application of liposomes to sonoporation. Ultrasound Med Biol 32(3), 429–437 (2006)CrossRefGoogle Scholar
  38. X. Xi, F.B. Cegla, M. Lowe, A. Thiemann, T. Nowak, R. Mettin, F. Holsteyns, A. Lippert, Study on the bubble transport mechanism in an acoustic standing wave field. Ultrasonics 51(8), 1014–1025 (2011)CrossRefGoogle Scholar
  39. Y. Yamakoshi, M. Koganezawa, Bubble manipulation by self organization of bubbles inside ultrasonic wave. Jpn J Appl Phys 44(6B) (2004)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • A. L. Bernassau
    • 1
  • P. G. A. MacPherson
    • 1
  • J. Beeley
    • 1
  • B. W. Drinkwater
    • 2
  • D. R. S. Cumming
    • 1
  1. 1.School of EngineeringUniversity of GlasgowGlasgowUK
  2. 2.Department of Mechanical EngineeringUniversity of BristolBristolUK

Personalised recommendations