Cardiomyocyte-driven gel network for bio mechano-informatic wet robotics


This paper reports on a cellular mechano-informatics network gel robot which was powered by culturing cardiomyocytes in the micro gel structure. Contraction activities propagated through the cardiomyocyte gel network will transmit a spatial mechanical wave as information about the chemical and mechanical responses to environmental changes. The cardiomyocyte gel network robot transmits electrically excited potential and mechanical stretch-induced contractions as information carried on the gel network. The cardiomyocyte gel network robot was fabricated from a mixture of primary cardiomyocytes and collagen gel and molded in a PDMS casting mold, which could produce serial, parallel lattice, or radial pattern networks. Fluorescent calcium imaging showed that the calcium activity of the cardiomyocytes in the gel network was segmented in small domains in the gel network; however, the local contraction that started on one branch of the gel network was propagated to a neighboring branch, and the propagation velocity was increased with increasing concentration of adrenaline. This increase was limited to ~20 mm/s. This proposed mechano-informatics kineticism will provide not only mechano-informatics for cardiomyocyte powered wet robotics but will also help show how cardiac disease occurs in activity propagation systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. P. Camelliti, T.K. Borg, P. Kohl, Cardiovasc. Res. 65, 40 (2005)

    Article  Google Scholar 

  2. T.P. de Boer, H.V.M. van Rijen, M.A.G. van der Heyden, J.M.T. de Bakker, T.A.B. van Veen, Neth. Heart J. 16, 106 (2008)

    Article  Google Scholar 

  3. T. Eschenhagen, M. Didie, J. Heubach, U. Ravens, W.-H. Zimmermann, Transpl. Immunol. 9, 315 (2002)

    Article  Google Scholar 

  4. A.W. Feinberg, A. Feigel, S.S. Shevkoplyas, S. Sheehy, G.M. Whitesides, K.K. Parker, Science 317, 1366 (2007)

    Article  Google Scholar 

  5. H. Horiguchi, K. Imagawa, T. Hoshino, Y. Akiyama, K. Morishima, IEEE T. Nanobiosci. 8, 349 (2009)

    Article  Google Scholar 

  6. Y. Itabashi, S. Miyoshi, S. Yuasa, J. Fujita, T. Shimizu, T. Okano, K. Fukuda, S. Ogawa, Cardiovasc. Res. 67, 561 (2005)

    Article  Google Scholar 

  7. T. Kaneko, K. Kojima, K. Yasuda, Biochem. Biophys. Res. Commun. 356, 494 (2007)

    Article  Google Scholar 

  8. A.M. Katz, Physiology of the Heart (Lippincott Williams & Wilkins, 2006).

  9. J. Kim, J. Park, S. Yang, J. Baek, B. Kim, S.H. Lee, E.-S. Yoon, K. Chun, S. Park, Lab Chip 7, 1504 (2007)

    Article  Google Scholar 

  10. P. Kohl, D. Noble, Cardiovasc. Res. 32, 62 (1996)

    Google Scholar 

  11. P. Kohl, A.G. Kamkin, I.S. Kiseleva, D. Noble, Exp. Physiol. 79, 943 (1994)

    Google Scholar 

  12. P. Kohl, P. Camelliti, F.L. Burton, G.L. Smith, J. Electrocardiol. 38, 45 (2005)

    Article  Google Scholar 

  13. K. Kojima, T. Kaneko, K. Yasuda, Biochem. Biophys. Res. Commun. 351, 209 (2006)

    Article  Google Scholar 

  14. J. Konhilas, T. Irving, P. de Tombe, Pflüg. Arch. Eur. J. Physiol. 445, 305 (2002)

    Article  Google Scholar 

  15. H. Naito, I. Melnychenko, M. Didie, K. Schneiderbanger, P. Schubert, S. Rosenkranz, T. Eschenhagen, W.-H. Zimmermann, Circulation 114, I–72 (2006)

    Article  Google Scholar 

  16. S. Rohr, Hear. Rhythm. 6, 848 (2009)

    Article  Google Scholar 

  17. Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, Lab Chip 6, 362 (2006a)

    Article  Google Scholar 

  18. Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, Lab Chip 6, 230 (2006b)

    Article  Google Scholar 

  19. J. Xi, J.J. Schmidt, C.D. Montemagno, Nat. Mater. 4, 180 (2005)

    Article  Google Scholar 

  20. W.-H. Zimmermann, K. Schneiderbanger, P. Schubert, M. Didie, F. Munzel, J.F. Heubach, S. Kostin, W.L. Neuhuber, T. Eschenhagen, Circ. Res. 90, 223 (2002)

    Article  Google Scholar 

  21. H. Zimmermann, F. Ehrhart, D. Zimmermann, K. Müller, A. Katsen-Globa, M. Behringer, P.J. Feilen, P. Gessner, G. Zimmermann, S.G. Shirley, M.M. Weber, J. Metze, U. Zimmermann, Appl. Phys. Mater. Sci. Process. 89, 909 (2007)

    Article  Google Scholar 

Download references


This work was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology in Japan (Nos. 21676002, 21111503, 21225007 and 23111705), the MEXT project, “Creating Hybrid Organs of the future” at Osaka University, and the Industrial Technology Research Grant Program from the New Energy and Industrial Technology Development Organization (NEDO) of Japan, the Foundation of the Advanced Technology Institute, and NEC C&C Foundation.

Author information



Corresponding author

Correspondence to Keisuke Morishima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Lattice nine-node cardiomyocyte gel network. Each end of the network was pinned on the substrate. The width of capture size in the movie was 6.1 mm. (AVI 1,785 kb)

Serial cardiomyocyte gel. Freestanding cardiomyocyte gel peeled from a casting mold. The width of capture size in the movie was 3.9 mm. (AVI 802 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoshino, T., Imagawa, K., Akiyama, Y. et al. Cardiomyocyte-driven gel network for bio mechano-informatic wet robotics. Biomed Microdevices 14, 969–977 (2012).

Download citation


  • Cardiomyocyte
  • Hydrogel
  • Cellular network
  • Bio computing
  • Bioactuator
  • Wet robotics