Biomedical Microdevices

, Volume 14, Issue 6, pp 1115–1127 | Cite as

Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering

  • Dario Puppi
  • Carlos Mota
  • Matteo Gazzarri
  • Dinuccio Dinucci
  • Antonio Gloria
  • Mairam Myrzabekova
  • Luigi Ambrosio
  • Federica Chiellini


An Additive Manufacturing technique for the fabrication of three-dimensional polymeric scaffolds, based on wet-spinning of poly(ε-caprolactone) (PCL) or PCL/hydroxyapatite (HA) solutions, was developed. The processing conditions to fabricate scaffolds with a layer-by-layer approach were optimized by studying their influence on fibres morphology and alignment. Two different scaffold architectures were designed and fabricated by tuning inter-fibre distance and fibres staggering. The developed scaffolds showed good reproducibility of the internal architecture characterized by highly porous, aligned fibres with an average diameter in the range 200–250 μm. Mechanical characterization showed that the architecture and HA loading influenced the scaffold compressive modulus and strength. Cell culture experiments employing MC3T3-E1 preosteoblast cell line showed good cell adhesion, proliferation, alkaline phosphatase activity and bone mineralization on the developed scaffolds.


Tissue engineering Scaffolds Wet-spinning Additive manufacturing Polycaprolactone 



This work was done within the framework of the European Network of Excellence “EXPERTISSUES” (Project NMP3-CT-2004-500283). Mr. Piero Narducci of University of Pisa, Italy, is acknowledged for recording SEM images.


  1. F.J. Alcaín, M.I. Burón, J. Bioenerg. Biomembr. 26, 393–398 (1994)CrossRefGoogle Scholar
  2. ASTM International F2792 - 10e1 “Standard Terminology for Additive Manufacturing Technologies”, 2010.Google Scholar
  3. P. Bartolo, M. Domingos, A. Gloria, J. Ciurana, CIRP Ann. Manuf. Technol. 60, 271–274 (2011)CrossRefGoogle Scholar
  4. B.F. Barton, J.L. Reeve, A.J. McHugh, J Polym Sci Pol Phys 35, 569–585 (1997)CrossRefGoogle Scholar
  5. G.R. Beck, E.C. Sullivan, E. Moran, B. Zerler, J. Cell. Biochem. 68, 269–280 (1998)CrossRefGoogle Scholar
  6. J.W. Calvert, W.C. Chua, N.A. Gharibjanian, S. Dhar, G.R.D. Evans, Plast. Reconstr. Surg. 116, 567–576 (2005)CrossRefGoogle Scholar
  7. H. Gao, Y. Gu, Q. Ping, J Control Release 118, 325–332 (2007)CrossRefGoogle Scholar
  8. A. Gloria, T. Russo, R. De Santis, L. Ambrosio, J App Biomat Biomech 7, 141–152 (2009)Google Scholar
  9. C.D. Hoemann, H. El-Gabalawy, M.D. McKee, Pathol. Biol. 57, 318–323 (2009)CrossRefGoogle Scholar
  10. D.W. Hutmacher, Biomaterials 21, 2529–2543 (2000)CrossRefGoogle Scholar
  11. D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, K.C. Tan, J. Biomed. Mater. Res. 55, 203–216 (2001)CrossRefGoogle Scholar
  12. V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474–5491 (2005)CrossRefGoogle Scholar
  13. M. Kikuchi, Y. Koyama, T. Yamada, Y. Imamura, T. Okada, N. Shirahama, K. Akita, K. Takakuda, J. Tanaka, Biomaterials 25, 5979–5986 (2004)CrossRefGoogle Scholar
  14. H.-W. Kim, J.C. Knowles, H.-E. Kim, J Biomed Mater Res A 70A, 467–479 (2004)CrossRefGoogle Scholar
  15. Y-H Koh, C-J Bae , J-J Sun , I-K Jun , H-E Kim, J Mater Sci Mater M 17, 773-778-778 (2006)Google Scholar
  16. T. Kokubo, H.M. Kim, M. Kawashita, Biomaterials 24, 2161–2175 (2003)CrossRefGoogle Scholar
  17. K.P. Kommareddy, C. Lange, M. Rumpler, J.W. Dunlop, I. Manjubala, J. Cui, K. Kratz, A. Lendlein, P. Fratzl, Biointerphases 5, 45 (2010)CrossRefGoogle Scholar
  18. K. Kyriakidou, G. Lucarini, A. Zizzi, E. Salvolini, M. Mattioli Belmonte, F. Mollica, A. Gloria, L. Ambrosio, J Bioact Compat Pol 23, 227–243 (2008)CrossRefGoogle Scholar
  19. R. Langer, J.P. Vacanti, Science 260, 920–926 (1993)CrossRefGoogle Scholar
  20. K.F. Leong, C.M. Cheah, C.K. Chua, Biomaterials 24, 2363–2378 (2003)CrossRefGoogle Scholar
  21. I.B. Leonor, M.T. Rodrigues, M.E. Gomes, R.L. Reis, J Tissue Eng Regen Med 5, 104–111 (2011)CrossRefGoogle Scholar
  22. M. Domingos, F. Chiellini, A. Gloria, L. Ambrosio, P. J. Bartolo, Chiellini E, in BioExtruder: Study of the influence of process parameters on PCL scaffolds properties, ed. By Bartolo PJ (CRC Press Taylor & Francis; 2009), p 67 - 73Google Scholar
  23. B.C. Mack, K.W. Wright, M.E. Davis, J Control Release 139, 205–211 (2009)CrossRefGoogle Scholar
  24. D. Marolt, M. Knezevic, G. Vunjak-Novakovic, Stem Cell Research & Therapy 1, 1–10 (2010)CrossRefGoogle Scholar
  25. C. Mota, D. Puppi, D. Dinucci, C. Errico, P. Bártolo, F. Chiellini, Materials 4, 527–542 (2011)CrossRefGoogle Scholar
  26. S. Ozkan, D.M. Kalyon, X. Yu, C.A. McKelvey, M. Lowinger, Biomaterials 30, 4336–4347 (2009)CrossRefGoogle Scholar
  27. J.-B. Park, J. Surg. Res. 6, 1–6 (2010)Google Scholar
  28. I. Pashkuleva, P.M. López-Pérez, H.S. Azevedo, R.L. Reis, Mat Sci Eng C 30, 981–989 (2010)CrossRefGoogle Scholar
  29. D. Puppi, F. Chiellini, A.M. Piras, E. Chiellini, Prog. Polym. Sci. 35, 403–440 (2010)CrossRefGoogle Scholar
  30. D. Puppi, D. Dinucci, C. Bartoli, C. Mota, C. Migone, F. Dini, G. Barsotti, F. Carlucci, F. Chiellini, J Bioact Compat Pol 26, 478–492 (2011a)CrossRefGoogle Scholar
  31. D. Puppi, A.M. Piras, F. Chiellini, E. Chiellini, A. Martins, I.B. Leonor, N. Neves, R. Reis, J Tissue Eng Regen Med 5, 253–263 (2011b)CrossRefGoogle Scholar
  32. L.D. Quarles, D.A. Yohay, L.W. Lever, R. Caton, R.J. Wenstrup, J. Bone Miner. Res. 7, 683–692 (1992)CrossRefGoogle Scholar
  33. B. Rai, M.E. Oest, K.M. Dupont, K.H. Ho, S.H. Teoh, R.E. Guldberg, J Biomed Mater Res A 81A, 888–899 (2007)CrossRefGoogle Scholar
  34. K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biomaterials 27, 3413–3431 (2006)CrossRefGoogle Scholar
  35. C. Schiller, M. Epple, Biomaterials 24, 2037–2043 (2003)CrossRefGoogle Scholar
  36. C.M. Stanford, P.A. Jacobson, E.D. Eanes, L.A. Lembke, R.J. Midura, J. Biol. Chem. 270, 9420–9428 (1995)CrossRefGoogle Scholar
  37. M.S. Taylor, A.U. Daniels, K.P. Andriano, J. Heller, J. Appl. Biomater. 5, 151–157 (1994)CrossRefGoogle Scholar
  38. C.S. Tsay, A.J. McHugh, J Polym Sci Pol Phys 30, 309–313 (1992)CrossRefGoogle Scholar
  39. K. Tuzlakoglu, C.M. Alves, J.F. Mano, R.L. Reis, Macromol. Biosci. 4, 811–819 (2004)CrossRefGoogle Scholar
  40. Tuzlakoglu K, Reis RL, in Chitosan-based scaffolds in orthopaedic applications, ed. By Reis RL (Woodhead; Cambridge, 2008), p 357–373Google Scholar
  41. K. Tuzlakoglu, I. Pashkuleva, M.T. Rodrigues, M.E. Gomes, G.Hv. Lenthe, R. Müller, R.L. Reis, J Biomed Mater Res A 92A, 369–377 (2010)CrossRefGoogle Scholar
  42. E. Ural, K. Kesenci, L. Fambri, C. Migliaresi, E. Piskin, Biomaterials 21, 2147–2154 (2000)CrossRefGoogle Scholar
  43. J.P. Vacanti, M.A. Morse, W.M. Saltzman, A.J. Domb, A. Perez-Atayde, R. Langer, J. Pediatr. Surg. 23, 3–9 (1988)CrossRefGoogle Scholar
  44. F. Wang, L. Shor, A. Darling, S. Khalil, W. Sun, S. Güçeri, A. Lau, Rapid Prototyping J 10, 42–49 (2004)CrossRefGoogle Scholar
  45. J. Wang, X. Yu, Acta Biomater 6, 3004–3012 (2010)CrossRefGoogle Scholar
  46. B.M. Whited, J.R. Whitney, M.C. Hofmann, Y. Xu, M.N. Rylander, Biomaterials 32, 2294–2304 (2011)CrossRefGoogle Scholar
  47. I.M. Wienk, R.M. Boom, M.A.M. Beerlage, A.M.W. Bulte, C.A. Smolders, H. Strathmann, J Membrane Sci 113, 361–371 (1996)CrossRefGoogle Scholar
  48. J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Biomaterials 26, 4817–4827 (2005)CrossRefGoogle Scholar
  49. M.R. Williamson, A.G.A. Coombes, Biomaterials 25, 459–465 (2004)CrossRefGoogle Scholar
  50. T.B.F. Woodfield, J. Malda, J. de Wijn, F. Péters, J. Riesle, C.A. van Blitterswijk, Biomaterials 25, 4149–4161 (2004)CrossRefGoogle Scholar
  51. M.A. Woodruff, D.W. Hutmacher, Prog. Polym. Sci. 35, 1217–1256 (2010)CrossRefGoogle Scholar
  52. P. Wutticharoenmongkol, P. Pavasant, P. Supaphol, Biomacromolecules 8, 2602–2610 (2007)CrossRefGoogle Scholar
  53. X. Zhang, H. Hua, X. Shen, Q. Yang, Polymer 48, 1005–1011 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Dario Puppi
    • 1
  • Carlos Mota
    • 1
  • Matteo Gazzarri
    • 1
  • Dinuccio Dinucci
    • 1
  • Antonio Gloria
    • 2
  • Mairam Myrzabekova
    • 1
  • Luigi Ambrosio
    • 2
  • Federica Chiellini
    • 1
    • 3
  1. 1.Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab), Department of Chemistry and Industrial ChemistryUniversity of PisaPisaItaly
  2. 2.Institute of Composite and Biomedical MaterialsNational Research CouncilNaplesItaly
  3. 3.via Vecchia Livornese 1291, 56010 San Piero a Grado (Pi)PisaItaly

Personalised recommendations