Biomedical Microdevices

, Volume 14, Issue 5, pp 873–883 | Cite as

Microfabrication of cylindrical microfluidic channel networks for microvascular research

  • Zhouchun Huang
  • Xiang Li
  • Manuela Martins-Green
  • Yuxin Liu


Current methods for formation of microvascular channel scaffolds are limited with non-circular channel cross-sections, complicated fabrication, and less flexibility in microchannel network design. To address current limitations in the creation of engineered microvascular channels with complex three-dimensional (3-D) geometries in the shape of microvessels, we have developed a reproducible, cost-effective, and flexible micromanufacturing process combined with photolithographic reflowable photoresist and soft lithography techniques to fabricate cylindrical microchannel and networks. A positive reflowable photoresist AZ P4620 was used to fabricate a master microchannel mold with semi-circular cross-sections. By the alignment and bonding of two polydimethylsiloxane (PDMS) microchannels replicated from the master mold together, a cylindrical microchannel or microchannel network was created. Further examination of the channel dimensions and surface profiles at different branching levels showed that the shape of the microfluidic channel was well approximated by a semi-circular surface, and a multi-level, multi-depth channel network was created. In addition, a computational fluidic dynamics (CFD) model was used to simulate shear flows and corresponding pressure distributions inside of the microchannel and channel network based on the dimensions of the fabricated channels. The fabricated multi-depth cylindrical microchannel network can provide platforms for the investigation of microvascular cells growing inside of cylindrical channels under shear flows and lumen pressures, and work as scaffolds for the investigation of morphogenesis and tubulogenesis.


Reflow photoresist PDMS Multi-level Multi-depth Microchannels 



Xiang Li and Zhouchun Huang are co-first authors. We thank Mr. Michael Martin for proofreading and editing the paper. This research work was supported by WVU EPSCoR program funded by the National Science Foundation (EPS-1003907). Partial support for this work was provided by the National Science Foundation's ADVANCE IT Program under Award HRD-1007978. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The microfabrication work was done in WVU Shared Research Facilities (Cleanroom facilities) and Microfluidic Integrative Cellular Research on Chip Laboratory (MICRoChip Lab) at West Virginia University.


  1. M. Abdelgawad, C. Wu, W.-Y. Chien, W.R. Geddie, M.A.S. Jewett, Y. Sun, Lab Chip 11, 545 (2011)CrossRefGoogle Scholar
  2. P. Abgrall, A.M. Gue, J. Micromech. Microeng. R15, 17 (2007)Google Scholar
  3. A. Agarwal, N. Ranganathan, W.L. Ong, K.C. Tang, L. Yobas, Sens. Actuators A 142, 80 (2008)CrossRefGoogle Scholar
  4. Application notes from MicroChemicals: Reflow of Photoresist,
  5. H. Becker, C. Gartner, Anal. Bioanal. Chem. 390, 89 (2008)CrossRefGoogle Scholar
  6. L.M. Bellan, S.P. Singh, P.W. Henderson, T.J. Porri, H.G. Craighead, J.A. Spector, Soft Matter 5, 1354 (2009)CrossRefGoogle Scholar
  7. J.T. Borenstein, M.M. Tupper, P.J. Mack, E.J. Weinberg, A.S. Khalil, J. Hsiao, G. García-Cardeña, Biomed. Microdevices 12, 71 (2010)CrossRefGoogle Scholar
  8. J.P. Camp, T. Stokol, M.L. Shuler, Biomed. Microdevices 10, 179 (2008)CrossRefGoogle Scholar
  9. Y.-C. Chen, G.-Y. Chen, Y.-C. Lin, G.-J. Wang, Microfluid. Nanofluid. 9, 585 (2010)CrossRefGoogle Scholar
  10. J.A. Chen, Y. Zheng, Q. Tan, Y.L. Zhang, J. Li, W.R. Geddie, M.A.S. Jewett, Y. Sun, Biomicrofluidics 5, 014113 (2011)CrossRefGoogle Scholar
  11. K.M. Chrobak, D.R. Potter, J. Tien, Microvasc. Res. 71, 185–196 (2006)CrossRefGoogle Scholar
  12. O.C. Colgan, G. Ferguson, N.T. Collins, R.P. Murphy, G. Meade, P.A. Cahill, P.M. Cummins, Am. J. Physiol. Heart Circ. Physiol. 292, H3190 (2007)CrossRefGoogle Scholar
  13. C. Couzon, A. Duperray, C. Verdier, Eur. Biophys. J. 38, 1035 (2009)CrossRefGoogle Scholar
  14. A. Crespi, Y. Gu, B. Ngamson, H.J.W.M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H.H. van den Vlekkert, P. Watts, G. Cerullo, R. Osellame, Lab Chip 10, 1167 (2010)CrossRefGoogle Scholar
  15. D. Daly, R.F. Stevens, M.C. Hutley, N. Davies, Meas. Sci. Technol. 1, 759 (1990)CrossRefGoogle Scholar
  16. P.F. Davies, Physiol. Rev. 75, 519–560 (1995)Google Scholar
  17. M.J. de Boer, R.W. Tjerkstra, J.W. Berenschot, H.V. Jansen, G.J. Burger, J.G.E. Gardeniers, M. Elwenspoek, A. van den Berg, J. Microelectromech. Syst. 9, 94 (2000)CrossRefGoogle Scholar
  18. de Gennes, Rev. Mod. Phys. 57, 827–863 (1985)CrossRefGoogle Scholar
  19. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998)CrossRefGoogle Scholar
  20. H. G. Elias, VCH Publishers, New York (1997)Google Scholar
  21. D.R. Emerson, K. Cieslicki, X. Gu, R.W. Barber, Lab Chip 6, 447 (2006)CrossRefGoogle Scholar
  22. L.K. Fiddes, N. Raz, S. Srigunapalan, Biomaterials 31, 3459 (2010)CrossRefGoogle Scholar
  23. A.B. Fisher, S. Chien, A.I. Barakat, R.M. Nerem, Am. J. Physiol. Lung Cell. Mol. Physiol. 281(3), L529 (2001)Google Scholar
  24. Y. C. Fung, New York, NY: Springer; (1997)Google Scholar
  25. V.V. Gafiychuk, I.A. Lubashevsky, J. Theor. Biol. 212, 1 (2001)CrossRefGoogle Scholar
  26. A. Gnasso, C. Carallo, C. Irace, V. Spagnuolo, G. De Novara, P.L. Mattioli, A. Pujia, Circulation 94, 3257–3262 (1996)CrossRefGoogle Scholar
  27. T.R. Jay, M.B. Stern, Opt. Eng. 33, 3552–3555 (1994)CrossRefGoogle Scholar
  28. T. Kadohama, N. Akasaka, K. Nishimura, Y. Hoshino, T. Sasajima, B.E. Sumpio, Endothelium 13, 43 (2006)CrossRefGoogle Scholar
  29. S. Kaihara, J. Borenstein, R. Koka, S. Lalan, E.R. Ochoa, M. Ravens, H. Pien, B. Cunningham, J.P. Vacanti, Tissue Eng. 6, 105 (2000)CrossRefGoogle Scholar
  30. A. Kamiya, R. Bukhari, T. Togawa, Bull. Math. Biol. 46, 127–137 (1984)Google Scholar
  31. J. Koskela, Master's thesis, Tampereen teknillinen yliopisto. (2010)Google Scholar
  32. M. LaBarbera, Science 249, 992–1000 (1990)CrossRefGoogle Scholar
  33. T.G. Leong, A.M. Zarafshar, D.H. Gracias, Small 6, 792 (2010)CrossRefGoogle Scholar
  34. D. Lim, Y. Kamotani, B. Cho, J. Mazumder, S. Takayama, Lab Chip 3, 318 (2003)CrossRefGoogle Scholar
  35. R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, D.J. Beebe, J. Microelectromech. Syst. 9, 190 (2000)CrossRefGoogle Scholar
  36. H. Lu, L.Y. Koo, W.M. Wang, D.A. Lauffenburger, L.G. Griffith, K.F. Jensen, Anal. Chem. 76, 5257 (2004)CrossRefGoogle Scholar
  37. A.M. Malek, S.L. Alper, S. Izumo, JAMA 282(21), 2035–2042 (1999)CrossRefGoogle Scholar
  38. V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, P.L. Cavallotti, Appl. Phys. Lett. 88, 191107 (2006)CrossRefGoogle Scholar
  39. J.A. McCann, S.D. Peterson, M.W. Plesniak, T.J. Webster, K.M. Haberstroh, Ann. Biomed. Eng. 33, 328 (2005)CrossRefGoogle Scholar
  40. A. Meeson, M. Palmer, M. Calfon, R. Lang, Development 122, 3929 (1996)Google Scholar
  41. C.D. Murray, Proc Natl Acad Sci USA 12, 207 (1926a)CrossRefGoogle Scholar
  42. C.D. Murray, J. Gen. Physiol. 9, 835 (1926b)CrossRefGoogle Scholar
  43. R.M. Nerem, R.W. Alexander, D.C. Chappell, R.M. Medford, S.E. Varner, W.R. Taylor, Am. J. Med. Sci. 316(3), 169 (1998)CrossRefGoogle Scholar
  44. F.T. O’Neill, J.T. Sheridan, Optik 113, 391 (2002)CrossRefGoogle Scholar
  45. C.M. Potter, M.H. Lundberg, L.S. Harrington, C.M. Warboys, T.D. Warner, R.E. Berson, A.V. Moshkov, J. Gorelik, P.D. Weinberg, J.A. Mitchell, Arterioscler. Thromb. Vasc. Biol. 31, 384 (2011)CrossRefGoogle Scholar
  46. G.M. Riha, P.H. Lin, A.B. Lumsden, Q. Yao, C. Chen, Ann. Biomed. Eng. 33, 772 (2005)CrossRefGoogle Scholar
  47. I. Rodriguez, P. Spicar-Mihalic, C.L. Kuyper, G.S. Fiorini, D.T. Chiu, Anal. Chim. Acta 496, 205 (2003)CrossRefGoogle Scholar
  48. W. Schaper, Circulation 104, 1994 (2001)Google Scholar
  49. A. Schilling, R. Merz, C. Ossmann, H.P. Herzig, Opt. Eng. 39, 2171–2176 (2000)CrossRefGoogle Scholar
  50. K. Sekimoto, R. Oguma, K. Kawasaki, Ann. Phys. 176, 359–392 (1987)CrossRefGoogle Scholar
  51. C.T. Seo, C.H. Bae, D.S. Eun, J.K. Shin, J.H. Lee, Jpn. J. Appl. Phys. 43, 7773 (2004)CrossRefGoogle Scholar
  52. J. Shao, L. Wu, J. Wu, Y. Zheng, H. Zhao, Q. Jin, J. Zhao, Lab Chip 9, 3118 (2009)CrossRefGoogle Scholar
  53. T.F. Sherman, J. Gen. Physiol. 78, a 431 (1981)CrossRefGoogle Scholar
  54. S.S. Shevkoplyas, S.C. Gifford, T. Yoshida, M.W. Bitensky, Microvasc. Res. 65, 132 (2003)CrossRefGoogle Scholar
  55. S.H. Song, C.K. Lee, T.J. Kim, I.C. Shin, S.C. Jun, H.I. Jung, Microfluid. Nanofluid. 9, 533 (2010)CrossRefGoogle Scholar
  56. A.F. Stalder, Z. Liu, J. Hennig, J.G. Korvink, K.C. Li, and M. Markl, Part 1, 27-38, Springer Science (2011)Google Scholar
  57. J. Surapisitchat, R.J. Hoefen, X. Pi, M. Yoshizumi, C. Yan, B.C. Berk, Proc. Natl. Acad. Sci. U. S. A. 98, 6476 (2001)CrossRefGoogle Scholar
  58. J.M. Tarbell, Cardiovasc. Res. 87, 320 (2010)CrossRefGoogle Scholar
  59. N. Van Royen, J.J. Piek, W. Schaper, C. Bode, I. Buschmann, J. Nucl. Cardiol. 8, 687 (2001)CrossRefGoogle Scholar
  60. O.V. Voinov, Jour. Appl. Mech. Tech. Phys. 40, 86–92 (1999)MathSciNetCrossRefGoogle Scholar
  61. G.-J. Wang, K.-H. Ho, S.-H. Hsu, K.-P. Wang, Biomed. Microdevices 9, 657 (2007)CrossRefGoogle Scholar
  62. E. Warabi, Y. Wada, H. Kajiwara, M. Kobayashi, N. Koshiba, T. Hisada, M. Shibata, J. Ando, M. Tsuchiya, T. Kodama, N. Noguchi, Free Radic. Biol. Med. 37, 682 (2004)CrossRefGoogle Scholar
  63. G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001)CrossRefGoogle Scholar
  64. M.E. Wilson, N. Kota, Y.T. Kim, Y. Wang, D.B. Stolz, P.R. LeDuc, O.B. Ozdoganlar, Lab Chip 11, 1550 (2011)CrossRefGoogle Scholar
  65. C.J. World, G. Garin, B. Berk, Curr. Atheroscler. Rep. 8, 240 (2006)CrossRefGoogle Scholar
  66. Y. Xia, G.M. Whiteside, Annu. Rev. Mater. Sci. 28, 153 (1998)CrossRefGoogle Scholar
  67. B. Young, J. W. Heath, Wheater’s functional histology: A Text and Colour Atlas, 4th edn. (Churchill livingstone, 2000)Google Scholar
  68. M. Zamir, J.A. Medeiros, J. Gen. Physiol. 79, 353 (1982)CrossRefGoogle Scholar
  69. Y. Zeng, T.-S. Lee, P. Yu, P. Roy, H.-T. Low, J. Biomech. Eng. 128, 185 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Zhouchun Huang
    • 1
  • Xiang Li
    • 1
  • Manuela Martins-Green
    • 2
  • Yuxin Liu
    • 1
  1. 1.Lane Department of Computer Science and Electrical EngineeringWest Virginia UniversityMorgantownUSA
  2. 2.Department of Cell Biology and NeuroscienceUniversity of California at RiversideRiversideUSA

Personalised recommendations