Skip to main content
Log in

Microfabrication of cylindrical microfluidic channel networks for microvascular research

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Current methods for formation of microvascular channel scaffolds are limited with non-circular channel cross-sections, complicated fabrication, and less flexibility in microchannel network design. To address current limitations in the creation of engineered microvascular channels with complex three-dimensional (3-D) geometries in the shape of microvessels, we have developed a reproducible, cost-effective, and flexible micromanufacturing process combined with photolithographic reflowable photoresist and soft lithography techniques to fabricate cylindrical microchannel and networks. A positive reflowable photoresist AZ P4620 was used to fabricate a master microchannel mold with semi-circular cross-sections. By the alignment and bonding of two polydimethylsiloxane (PDMS) microchannels replicated from the master mold together, a cylindrical microchannel or microchannel network was created. Further examination of the channel dimensions and surface profiles at different branching levels showed that the shape of the microfluidic channel was well approximated by a semi-circular surface, and a multi-level, multi-depth channel network was created. In addition, a computational fluidic dynamics (CFD) model was used to simulate shear flows and corresponding pressure distributions inside of the microchannel and channel network based on the dimensions of the fabricated channels. The fabricated multi-depth cylindrical microchannel network can provide platforms for the investigation of microvascular cells growing inside of cylindrical channels under shear flows and lumen pressures, and work as scaffolds for the investigation of morphogenesis and tubulogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • M. Abdelgawad, C. Wu, W.-Y. Chien, W.R. Geddie, M.A.S. Jewett, Y. Sun, Lab Chip 11, 545 (2011)

    Article  Google Scholar 

  • P. Abgrall, A.M. Gue, J. Micromech. Microeng. R15, 17 (2007)

    Google Scholar 

  • A. Agarwal, N. Ranganathan, W.L. Ong, K.C. Tang, L. Yobas, Sens. Actuators A 142, 80 (2008)

    Article  Google Scholar 

  • Application notes from MicroChemicals: Reflow of Photoresist, http://www.microchemicals.eu/technical_information

  • H. Becker, C. Gartner, Anal. Bioanal. Chem. 390, 89 (2008)

    Article  Google Scholar 

  • L.M. Bellan, S.P. Singh, P.W. Henderson, T.J. Porri, H.G. Craighead, J.A. Spector, Soft Matter 5, 1354 (2009)

    Article  Google Scholar 

  • J.T. Borenstein, M.M. Tupper, P.J. Mack, E.J. Weinberg, A.S. Khalil, J. Hsiao, G. García-Cardeña, Biomed. Microdevices 12, 71 (2010)

    Article  Google Scholar 

  • J.P. Camp, T. Stokol, M.L. Shuler, Biomed. Microdevices 10, 179 (2008)

    Article  Google Scholar 

  • Y.-C. Chen, G.-Y. Chen, Y.-C. Lin, G.-J. Wang, Microfluid. Nanofluid. 9, 585 (2010)

    Article  Google Scholar 

  • J.A. Chen, Y. Zheng, Q. Tan, Y.L. Zhang, J. Li, W.R. Geddie, M.A.S. Jewett, Y. Sun, Biomicrofluidics 5, 014113 (2011)

    Article  Google Scholar 

  • K.M. Chrobak, D.R. Potter, J. Tien, Microvasc. Res. 71, 185–196 (2006)

    Article  Google Scholar 

  • O.C. Colgan, G. Ferguson, N.T. Collins, R.P. Murphy, G. Meade, P.A. Cahill, P.M. Cummins, Am. J. Physiol. Heart Circ. Physiol. 292, H3190 (2007)

    Article  Google Scholar 

  • C. Couzon, A. Duperray, C. Verdier, Eur. Biophys. J. 38, 1035 (2009)

    Article  Google Scholar 

  • A. Crespi, Y. Gu, B. Ngamson, H.J.W.M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H.H. van den Vlekkert, P. Watts, G. Cerullo, R. Osellame, Lab Chip 10, 1167 (2010)

    Article  Google Scholar 

  • D. Daly, R.F. Stevens, M.C. Hutley, N. Davies, Meas. Sci. Technol. 1, 759 (1990)

    Article  Google Scholar 

  • P.F. Davies, Physiol. Rev. 75, 519–560 (1995)

    Google Scholar 

  • M.J. de Boer, R.W. Tjerkstra, J.W. Berenschot, H.V. Jansen, G.J. Burger, J.G.E. Gardeniers, M. Elwenspoek, A. van den Berg, J. Microelectromech. Syst. 9, 94 (2000)

    Article  Google Scholar 

  • de Gennes, Rev. Mod. Phys. 57, 827–863 (1985)

    Article  Google Scholar 

  • D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998)

    Article  Google Scholar 

  • H. G. Elias, VCH Publishers, New York (1997)

  • D.R. Emerson, K. Cieslicki, X. Gu, R.W. Barber, Lab Chip 6, 447 (2006)

    Article  Google Scholar 

  • L.K. Fiddes, N. Raz, S. Srigunapalan, Biomaterials 31, 3459 (2010)

    Article  Google Scholar 

  • A.B. Fisher, S. Chien, A.I. Barakat, R.M. Nerem, Am. J. Physiol. Lung Cell. Mol. Physiol. 281(3), L529 (2001)

    Google Scholar 

  • Y. C. Fung, New York, NY: Springer; (1997)

  • V.V. Gafiychuk, I.A. Lubashevsky, J. Theor. Biol. 212, 1 (2001)

    Article  Google Scholar 

  • A. Gnasso, C. Carallo, C. Irace, V. Spagnuolo, G. De Novara, P.L. Mattioli, A. Pujia, Circulation 94, 3257–3262 (1996)

    Article  Google Scholar 

  • T.R. Jay, M.B. Stern, Opt. Eng. 33, 3552–3555 (1994)

    Article  Google Scholar 

  • T. Kadohama, N. Akasaka, K. Nishimura, Y. Hoshino, T. Sasajima, B.E. Sumpio, Endothelium 13, 43 (2006)

    Article  Google Scholar 

  • S. Kaihara, J. Borenstein, R. Koka, S. Lalan, E.R. Ochoa, M. Ravens, H. Pien, B. Cunningham, J.P. Vacanti, Tissue Eng. 6, 105 (2000)

    Article  Google Scholar 

  • A. Kamiya, R. Bukhari, T. Togawa, Bull. Math. Biol. 46, 127–137 (1984)

    Google Scholar 

  • J. Koskela, Master's thesis, Tampereen teknillinen yliopisto. (2010)

  • M. LaBarbera, Science 249, 992–1000 (1990)

    Article  Google Scholar 

  • T.G. Leong, A.M. Zarafshar, D.H. Gracias, Small 6, 792 (2010)

    Article  Google Scholar 

  • D. Lim, Y. Kamotani, B. Cho, J. Mazumder, S. Takayama, Lab Chip 3, 318 (2003)

    Article  Google Scholar 

  • R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref, D.J. Beebe, J. Microelectromech. Syst. 9, 190 (2000)

    Article  Google Scholar 

  • H. Lu, L.Y. Koo, W.M. Wang, D.A. Lauffenburger, L.G. Griffith, K.F. Jensen, Anal. Chem. 76, 5257 (2004)

    Article  Google Scholar 

  • A.M. Malek, S.L. Alper, S. Izumo, JAMA 282(21), 2035–2042 (1999)

    Article  Google Scholar 

  • V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, P.L. Cavallotti, Appl. Phys. Lett. 88, 191107 (2006)

    Article  Google Scholar 

  • J.A. McCann, S.D. Peterson, M.W. Plesniak, T.J. Webster, K.M. Haberstroh, Ann. Biomed. Eng. 33, 328 (2005)

    Article  Google Scholar 

  • A. Meeson, M. Palmer, M. Calfon, R. Lang, Development 122, 3929 (1996)

    Google Scholar 

  • C.D. Murray, Proc Natl Acad Sci USA 12, 207 (1926a)

    Article  Google Scholar 

  • C.D. Murray, J. Gen. Physiol. 9, 835 (1926b)

    Article  Google Scholar 

  • R.M. Nerem, R.W. Alexander, D.C. Chappell, R.M. Medford, S.E. Varner, W.R. Taylor, Am. J. Med. Sci. 316(3), 169 (1998)

    Article  Google Scholar 

  • F.T. O’Neill, J.T. Sheridan, Optik 113, 391 (2002)

    Article  Google Scholar 

  • C.M. Potter, M.H. Lundberg, L.S. Harrington, C.M. Warboys, T.D. Warner, R.E. Berson, A.V. Moshkov, J. Gorelik, P.D. Weinberg, J.A. Mitchell, Arterioscler. Thromb. Vasc. Biol. 31, 384 (2011)

    Article  Google Scholar 

  • G.M. Riha, P.H. Lin, A.B. Lumsden, Q. Yao, C. Chen, Ann. Biomed. Eng. 33, 772 (2005)

    Article  Google Scholar 

  • I. Rodriguez, P. Spicar-Mihalic, C.L. Kuyper, G.S. Fiorini, D.T. Chiu, Anal. Chim. Acta 496, 205 (2003)

    Article  Google Scholar 

  • W. Schaper, Circulation 104, 1994 (2001)

    Google Scholar 

  • A. Schilling, R. Merz, C. Ossmann, H.P. Herzig, Opt. Eng. 39, 2171–2176 (2000)

    Article  Google Scholar 

  • K. Sekimoto, R. Oguma, K. Kawasaki, Ann. Phys. 176, 359–392 (1987)

    Article  Google Scholar 

  • C.T. Seo, C.H. Bae, D.S. Eun, J.K. Shin, J.H. Lee, Jpn. J. Appl. Phys. 43, 7773 (2004)

    Article  Google Scholar 

  • J. Shao, L. Wu, J. Wu, Y. Zheng, H. Zhao, Q. Jin, J. Zhao, Lab Chip 9, 3118 (2009)

    Article  Google Scholar 

  • T.F. Sherman, J. Gen. Physiol. 78, a 431 (1981)

    Article  Google Scholar 

  • S.S. Shevkoplyas, S.C. Gifford, T. Yoshida, M.W. Bitensky, Microvasc. Res. 65, 132 (2003)

    Article  Google Scholar 

  • S.H. Song, C.K. Lee, T.J. Kim, I.C. Shin, S.C. Jun, H.I. Jung, Microfluid. Nanofluid. 9, 533 (2010)

    Article  Google Scholar 

  • A.F. Stalder, Z. Liu, J. Hennig, J.G. Korvink, K.C. Li, and M. Markl, Part 1, 27-38, Springer Science (2011)

  • J. Surapisitchat, R.J. Hoefen, X. Pi, M. Yoshizumi, C. Yan, B.C. Berk, Proc. Natl. Acad. Sci. U. S. A. 98, 6476 (2001)

    Article  Google Scholar 

  • J.M. Tarbell, Cardiovasc. Res. 87, 320 (2010)

    Article  Google Scholar 

  • N. Van Royen, J.J. Piek, W. Schaper, C. Bode, I. Buschmann, J. Nucl. Cardiol. 8, 687 (2001)

    Article  Google Scholar 

  • O.V. Voinov, Jour. Appl. Mech. Tech. Phys. 40, 86–92 (1999)

    Article  MathSciNet  Google Scholar 

  • G.-J. Wang, K.-H. Ho, S.-H. Hsu, K.-P. Wang, Biomed. Microdevices 9, 657 (2007)

    Article  Google Scholar 

  • E. Warabi, Y. Wada, H. Kajiwara, M. Kobayashi, N. Koshiba, T. Hisada, M. Shibata, J. Ando, M. Tsuchiya, T. Kodama, N. Noguchi, Free Radic. Biol. Med. 37, 682 (2004)

    Article  Google Scholar 

  • G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001)

    Article  Google Scholar 

  • M.E. Wilson, N. Kota, Y.T. Kim, Y. Wang, D.B. Stolz, P.R. LeDuc, O.B. Ozdoganlar, Lab Chip 11, 1550 (2011)

    Article  Google Scholar 

  • C.J. World, G. Garin, B. Berk, Curr. Atheroscler. Rep. 8, 240 (2006)

    Article  Google Scholar 

  • Y. Xia, G.M. Whiteside, Annu. Rev. Mater. Sci. 28, 153 (1998)

    Article  Google Scholar 

  • B. Young, J. W. Heath, Wheater’s functional histology: A Text and Colour Atlas, 4th edn. (Churchill livingstone, 2000)

  • M. Zamir, J.A. Medeiros, J. Gen. Physiol. 79, 353 (1982)

    Article  Google Scholar 

  • Y. Zeng, T.-S. Lee, P. Yu, P. Roy, H.-T. Low, J. Biomech. Eng. 128, 185 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

Xiang Li and Zhouchun Huang are co-first authors. We thank Mr. Michael Martin for proofreading and editing the paper. This research work was supported by WVU EPSCoR program funded by the National Science Foundation (EPS-1003907). Partial support for this work was provided by the National Science Foundation's ADVANCE IT Program under Award HRD-1007978. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The microfabrication work was done in WVU Shared Research Facilities (Cleanroom facilities) and Microfluidic Integrative Cellular Research on Chip Laboratory (MICRoChip Lab) at West Virginia University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Liu.

Additional information

Zhouchun Huang and Xiang Li contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Li, X., Martins-Green, M. et al. Microfabrication of cylindrical microfluidic channel networks for microvascular research. Biomed Microdevices 14, 873–883 (2012). https://doi.org/10.1007/s10544-012-9667-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9667-2

Keywords

Navigation