Advertisement

Biomedical Microdevices

, Volume 14, Issue 5, pp 799–809 | Cite as

An intra-cerebral drug delivery system for freely moving animals

  • Sven Spieth
  • Axel Schumacher
  • Tahl Holtzman
  • P. Dylan Rich
  • David E. Theobald
  • Jeffrey W. Dalley
  • Rachid Nouna
  • Stephan Messner
  • Roland Zengerle
Article

Abstract

Microinfusions of drugs directly into the central nervous system of awake animals represent a widely used means of unravelling brain functions related to behaviour. However, current approaches generally use tethered liquid infusion systems and a syringe pump to deliver drugs into the brain, which often interfere with behaviour. We address this shortfall with a miniaturised electronically-controlled drug delivery system (20 × 17.5 × 5 mm3) designed to be skull-mounted in rats. The device features a micropump connected to two 8-mm-long silicon microprobes with a cross section of 250 × 250 μm2 and integrated fluid microchannels. Using an external electronic control unit, the device allows infusion of 16 metered doses (0.25 μL each, 8 per silicon shaft). Each dosage requires 3.375 Ws of electrical power making the device additionally compatible with state-of-the-art wireless headstages. A dosage precision of 0.25 ± 0.01 μL was determined in vitro before in vivo tests were carried out in awake rats. No passive leakage from the loaded devices into the brain could be detected using methylene blue dye. Finally, the device was used to investigate the effects of the NMDA-receptor antagonist 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid, (R)-CPP, administered directly into the prefrontal cortex of rats during performance on a task to assess visual attention and impulsivity. In agreement with previous findings using conventional tethered infusion systems, acute (R)-CPP administration produced a marked increase in impulsivity.

Keywords

Drug delivery Micropump Silicon microprobes Microfluidics Five-choice serial reaction time task Impulsivity (R)-CPP Infralimbic cortex Neuroscience 

Notes

Acknowledgments

This work was performed in the frame of the Information Society Technologies (IST) Integrated Project Neuro-Probes of the 6th Framework Program (FP6) of the European Commission (Project number IST-027017). The authors gratefully acknowledge funding support by the Wellcome Trust and MRC in the United Kingdom through support of the Behavioural and Clinical Neuroscience Institute (BCNI) at Cambridge University. We also acknowledge support from Karsten Seidl, Patrick Ruther, and the cleanroom facility of IMTEK, University of Freiburg, as well as the support from the cleanroom and the machine shop facilities at HSG-IMIT. The authors would like to thank Joachim Leicht, Bernd Ehrbrecht, Jürgen Merz, and Alexander Fabricius (all HSG-IMIT) for conception, assembly, and programming of the electronic control unit. Furthermore, the authors would like to thank Björn Samel and Göran Stemme of Royal Institute of Technology Stockholm for useful discussions and insights. The provision of microspheres from Expancel, Sundsvall, Sweden, TPE membranes from KRAIBURG TPE GmbH & Co. KG, Waldkraiburg, Germany, and COP plates from Zeon Corporation, Tokyo, Japan, is gratefully acknowledged.

References

  1. Akzo Nobel, Eine technische Präsentation der Expancel® Mikrosphären, Technische Information Nr. 40 (2006)Google Scholar
  2. A. Bari, J.W. Dalley, T.W. Robbins, The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nat. Protoc. 3(5), 759–767 (2008)CrossRefGoogle Scholar
  3. A. Bonfanti, G. Zambra, G. Baranauskas, G.N. Angotzi, E. Maggiolini, M. Semprini, A. Vato, L. Fadiga, A.S. Spinelli, A.L. Lacaita, A wireless microsystem with digital data compression for neural spike recording. Microelectron. Eng. 88(8), 1672–1675 (2011)CrossRefGoogle Scholar
  4. M.A. Bozarth, R.A. Wise, Electrolytic microinfusion transducer system: an alternative method of intracranial drug application. J. Neurosci. Methods 2(3), 273–275 (1980)CrossRefGoogle Scholar
  5. M. Carli, M. Baviera, R.W. Invernizzi, C. Balducci, Dissociable contribution of 5-HT1A and 5-HT2A receptors in the medial prefrontal cortex to different aspects of executive control such as impulsivity and compulsive perseveration in rats. Neuropsychopharmacology 31(4), 757–767 (2006)CrossRefGoogle Scholar
  6. J. Chen, K.D. Wise, J.F. Hetke, S.C. Bledsoe Jr., A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans. Biomed. Eng. 44(8), 760–769 (1997)CrossRefGoogle Scholar
  7. H.E. Criswell, A simple chronic microinjection system for use with chemitrodes. Pharmacol. Biochem. Behav. 6(2), 237–238 (1977)CrossRefGoogle Scholar
  8. H. Domininghaus, P. Elsner, P. Eyerer, T. Hirth, Kunststoffe: Eigenschaften und Anwendungen, 7th edn. (Springer, Berlin, 2008)Google Scholar
  9. D. Fan, D. Rich, T. Holtzman, P. Ruther, J.W. Dalley, A. Lopez, M.A. Rossi, J.W. Barter, D. Salas-Meza, S. Herwik, T. Holzhammer, J. Morizio, H.H. Yin, A wireless multi-channel recording system for freely behaving mice and rats. PLoS One 6(7), e22033 (2011)CrossRefGoogle Scholar
  10. O. Frey, T. Holtzman, R.M. McNamara, D.E.H. Theobald, P.D. van der Wal, N.F. de Rooij, J.W. Dalley, M. Koudelka-Hep, Enzyme-based choline and l-glutamate biosensor electrodes on silicon microprobe arrays. Biosens. Bioelectron. 26(2), 477–484 (2010)CrossRefGoogle Scholar
  11. P. Griss, H. Andersson, G. Stemme, Expandable microspheres for the handling of liquids. Lab Chip 2(2), 117–120 (2002)CrossRefGoogle Scholar
  12. M. HajjHassan, V. Chodavarapu, S. Musallam, NeuroMEMS: neural probe microtechnologies. Sens. 8(10), 6704–6726 (2008)CrossRefGoogle Scholar
  13. A.C. Hoogerwerf, K.D. Wise, A three-dimensional microelectrode array for chronic neural recording. IEEE Trans. Biomed. Eng. 41(12), 1136–1146 (1994)CrossRefGoogle Scholar
  14. S. Ikemoto, L.G. Sharpe, A head-attachable device for injecting nanoliter volumes of drug solutions into brain sites of freely moving rats. J. Neurosci. Methods 110(1–2), 135–140 (2001)CrossRefGoogle Scholar
  15. M.D. Johnson, R.K. Franklin, M.D. Gibson, R.B. Brown, D.R. Kipke, Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings. J. Neurosci. Methods 174(1), 62–70 (2008)CrossRefGoogle Scholar
  16. D.R. Kipke, W. Shain, G. Buzsáki, E. Fetz, J.M. Henderson, J.F. Hetke, G. Schalk, Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci. 28(46), 11830–11838 (2008)CrossRefGoogle Scholar
  17. G. Lacey, Microelectrophoresis and Pressure Ejection Methods, in Neuroscience Methods: A Guide for Advanced Students, ed. by R. Martin (Harwood Academic Publishers, Amsterdam, 1997), pp. 80–84. Chap. 12Google Scholar
  18. P.M. Lalley, Microiontophoresis and Pressure Ejection, in Modern Techniques in Neuroscience Research, ed. by U. Windhorst, H. Johansson (Springer, Berlin, 1999), pp. 193–212. Chap. 7CrossRefGoogle Scholar
  19. P.S. Motta, J.W. Judy, Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-D electroplating process. IEEE Trans. Biomed. Eng. 52(5), 923–933 (2005)CrossRefGoogle Scholar
  20. E.R. Murphy, J.W. Dalley, T.W. Robbins, Local glutamate receptor antagonism in the rat prefrontal cortex disrupts response inhibition in a visuospatial attentional task. Psychopharmacol. (Heidelberg, Ger.) 179(1), 99–107 (2005)CrossRefGoogle Scholar
  21. S. Musa, M. Welkenhuysen, R. Huys, W. Eberle, K. Kuyck, C. Bartic, B. Nuttin, G. Borghs, Planar 2D-Array Neural Probe for Deep Brain Stimulation and Recording (DBSR), in Proc. 4th Eur. Conf. of the IFMBE, IFMBE Proceedings, vol. 22 (Springer, Berlin, 2009), pp. 2421–2425Google Scholar
  22. H.P. Neves, G.A. Orban, M. Koudelka-Hep, T. Stieglitz, P. Ruther, Development of modular multifunctional probe arrays for cerebral applications, in Proc. 3rd Int. IEEE EMBS Conf. on Neural Eng., pp. 104–109 (2007)Google Scholar
  23. P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, U.G. Hofmann, A 32-site neural recording probe fabricated by DRIE of SOI substrates. J. Micromech. Microeng. 12(4), 414–419 (2002)CrossRefGoogle Scholar
  24. T.W. Robbins, The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacol. (Heidelberg, Ger.) 163(3–4), 362–380 (2002)MathSciNetCrossRefGoogle Scholar
  25. N. Roxhed, S. Rydholm, B. Samel, W. van der Wijngaart, P. Griss, G. Stemme, A compact, low-cost microliter-range liquid dispenser based on expandable microspheres. J. Micromech. Microeng. 16(12), 2740–2746 (2006)CrossRefGoogle Scholar
  26. S. Royer, B.V. Zemelman, M. Barbic, A. Losonczy, G. Buzsáki, J.C. Magee, Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur. J. Neurosci. 31(12), 2279–2291 (2010)CrossRefGoogle Scholar
  27. P. Ruther, A. Aarts, O. Frey, S. Herwik, S. Kisban, K. Seidl, S. Spieth, A. Schumacher, M. Koudelka-Hep, O. Paul, T. Stieglitz, R. Zengerle, H. Neves, The NeuroProbes project – Multifunctional probe arrays for neural recording and stimulation. Biomed. Techn. 53(Suppl. 1), 238–240 (2008)Google Scholar
  28. P. Ruther, S. Herwik, S. Kisban, K. Seidl, O. Paul, Recent progress in neural probes using silicon MEMS technology. IEEJ Trans. Electr. Electron. Eng. 5(5), 505–515 (2010)CrossRefGoogle Scholar
  29. B. Samel, P. Griss, G. Stemme, A thermally responsive PDMS composite and its microfluidic applications. J. Microelectromech. Syst. 16(1), 50–57 (2007)CrossRefGoogle Scholar
  30. K. Seidl, S. Spieth, S. Herwik, J. Steigert, R. Zengerle, O. Paul, P. Ruther, In-plane silicon probes for simultaneous neural recording and drug delivery. J. Micromech. Microeng. 20(10), 105006 (11pp) (2010). CrossRefGoogle Scholar
  31. S. Spieth, A. Schumacher, K. Seidl, K. Hiltmann, S. Haeberle, R. McNamara, J.W. Dalley, S.A. Edgley, P. Ruther, R. Zengerle, Robust microprobe systems for simultaneous neural recording and drug delivery, in Proc. 4th Eur. Conf. of the IFMBE, IFMBE Proceedings, vol. 22 (Springer, Berlin, 2009), pp. 2426–2430Google Scholar
  32. S. Spieth, A. Schumacher, S. Messner, T. Holtzman, P.D. Rich, J.W. Dalley, R. Zengerle, A miniaturized on-demand drug delivery system for neural research, in Proc. 6th Int. Conf. on Microtechn. in Med. and Biol., pp. 62–63 (2011)Google Scholar
  33. S. Spieth, A. Schumacher, S. Messner, R. Zengerle, The NeuroMedicator - A micropump integrated with silicon microprobes for drug delivery in neural research. J. Micromech. Microeng., in press (2012)Google Scholar
  34. T.A. Szuts, V. Fadeyev, S. Kachiguine, A. Sher, M.V. Grivich, M. Agrochão, P. Hottowy, W. Dabrowski, E.V. Lubenov, A.G. Siapas, N. Uchida, A.M. Litke, M. Meister, A wireless multi-channel neural amplifier for freely moving animals. Nat. Neurosci. 14(2), 263–269 (2011)CrossRefGoogle Scholar
  35. K.D. Wise, A.M. Sodagar, Y. Yao, M.N. Gulari, G.E. Perlin, K. Najafi, Microelectrodes, microelectronics, and implantable neural microsystems. Proc. IEEE 96(7), 1184–1202 (2008)CrossRefGoogle Scholar
  36. A.N. Zorzos, E.S. Boyden, C.G. Fonstad, Multiwaveguide implantable probe for light delivery to sets of distributed brain targets. Opt. Lett. 35(24), 4133–4135 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sven Spieth
    • 1
  • Axel Schumacher
    • 1
  • Tahl Holtzman
    • 2
  • P. Dylan Rich
    • 2
    • 3
  • David E. Theobald
    • 2
  • Jeffrey W. Dalley
    • 2
    • 4
  • Rachid Nouna
    • 1
  • Stephan Messner
    • 1
  • Roland Zengerle
    • 1
    • 5
    • 6
  1. 1.Institut für Mikro-und Informationstechnik der Hahn-Schickard-Gesellschaft e.V. (HSG-IMIT)Villingen-SchwenningenGermany
  2. 2.Behavioural and Clinical Neuroscience Institute and Department of Experimental PsychologyUniversity of CambridgeCambridgeUK
  3. 3.Janelia Farm Research Campus, Howard Hughes Medical InstituteAshburnUSA
  4. 4.Department of PsychiatryUniversity of Cambridge, Addenbrooke’s HospitalCambridgeUK
  5. 5.Laboratory for MEMS Applications, Department of Microsystems Engineering (IMTEK)University of FreiburgFreiburgGermany
  6. 6.BIOSS - Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgGermany

Personalised recommendations