Advertisement

Biomedical Microdevices

, Volume 14, Issue 3, pp 603–612 | Cite as

Porous polysulfone coatings for enhanced drug delivery

  • Kartik M. Sivaraman
  • Christoph Kellenberger
  • Salvador Pané
  • Olgaç Ergeneman
  • Tessa Lühmann
  • Norman A. Luechinger
  • Heike Hall
  • Wendelin J. Stark
  • Bradley J. Nelson
Article

Abstract

The synthesis of a porous polysulfone (PSU) coating for use in drug delivery applications is presented. PSU can serve as a functional surface coating for drug delivery vehicles, such as intraocular biomicrorobots. The coatings can be applied using spin coating or dip coating. The porosity is introduced by selectively dissolving calcium carbonate nanoparticles embedded in the bulk polymer. The network of pores thus formed increases by a factor of thirty the amount of Rhodamine B (model drug) that can be loaded and by a factor of fifteen the amount that can be released. The films do not affect cell viability and exhibit poor cell adhesion. The straightforward synthesis and predictability of porosity enables the tuning of the amount of drug that can be loaded.

Keywords

Drug delivery Porous membranes Polysulfone Microrobotics 

References

  1. T. Allen, P. Cullis, Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004)CrossRefGoogle Scholar
  2. J. Bourges, C. Bloquel, A. Thomas, F. Froussart, A. Bochot, F. Azan, et al., Intraocular implants for extended drug delivery: therapeutic applications. Adv. Drug Deliv. Rev. 58, 1182–1202 (2006)CrossRefGoogle Scholar
  3. I.A. for Research on Cancer, in Iarc Monographs on the Evaluation of Carcenogenic Risks to Humans, vol 49, Chromium, Nickel and Welding (IARC Scientific Publications, 1990), pp. 257–445Google Scholar
  4. M. Colthurst, R. Williams, P. Hiscott, I. Grierson, Biomaterials used in the posterior segment of the eye. Biomaterials 21, 649–665 (2000)CrossRefGoogle Scholar
  5. W. De Jong, P. Borm, Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomedicine 3(2), 133–149 (2008)CrossRefGoogle Scholar
  6. O. Ergeneman, J.J. Abbott, G. Dogangil, B.J. Nelson, in Functionalizing Intraocular Microrobots with Surface Coatings. Proc. of 2008 Int. Conf. on Biomedical Robotics and Biomechatronics (BIOROB2008) (2008)Google Scholar
  7. O. Ergeneman, G. Chatzipirpiridis, F. Gelderblom, J. Pokki, S. Pane, M. Toro, et al., in Oxygen Sensing Using Microrobots. Proc of the 32nd International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC2010) (2010)Google Scholar
  8. K. Gastaldello, C. Melot, R.J. Kahn, J.L. Vanherweghem, J.L. Vincent, C. Tielemans, Comparison of cellulose diacetate and polysulfone membranes in the outcome of acute renal failure. A prospective randomized study. Nephrol. Dial. Transplant. 15(2), 224–230 (2001)CrossRefGoogle Scholar
  9. A. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)CrossRefGoogle Scholar
  10. M. Huber, W.J. Stark, S. Loher, M. Maciejewski, F. Krumeich, A. Baiker, Flame synthesis of calcium carbonate nanoparticles. Chem. Commun. (5), 648–650 (2005)Google Scholar
  11. A. Huhtala, T. Pohjonen, L. Salminen, A. Salminen, K. Kaarniranta, H. Uusitalo, In vitro biocompatibility of degradable biopolymers in cell line cultures from various ocular tissues: extraction studies. J. Mater Sci.-Mater. Med. 19(2), 645–649 (1998)CrossRefGoogle Scholar
  12. K. Kasprzak, F. Sunderman, K. Salnikow, Nickel carcinogenesis. Mutat. Res. 533(1–2), 67–97 (2003)Google Scholar
  13. K. Kim, K. Lee, K. Cho, C. Park, Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment. J. Membr. Sci. 199, 135–145 (2002)CrossRefGoogle Scholar
  14. M. Kummer, J.J. Abbott, B.E. Kratochvil, R. Borer, A. Sengul, B.J. Nelson, Octomag: an electromagnetic system for 5-dof wireless micromanipulation. IEEE Trans. Rob. 26(6) (2010)Google Scholar
  15. D.A. LaVan, T. McGuire, R. Langer, Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21(10), 1184–1191 (2003)CrossRefGoogle Scholar
  16. N. Lewinski, V. Colvin, R. Drezek, Cytotoxicity of nanoparticles. Small 4(1), 26–49 (2008)CrossRefGoogle Scholar
  17. M. Liong, J. Lu, M. Kovochich, T. Xia, S. Ruehm, A. Nel, et al., Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5), 889–896 (2008)CrossRefGoogle Scholar
  18. N. Luechinger, S. Walt, W.J. Stark, Printable nanoporous silver membranes. Chem. Mater. 22, 4980–4986 (2010)CrossRefGoogle Scholar
  19. L. Maedler, H. Kammler, R. Mueller, S. Pratsinis, Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33(2), 369–389 (2002)CrossRefGoogle Scholar
  20. B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)CrossRefGoogle Scholar
  21. J. Oh, R. Drumright, D. Siegwart, K. Matyjazewski, The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33(4), 448–477 (2008)CrossRefGoogle Scholar
  22. G. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, McR. Laughlin, et al., Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11(3), 169–183 (2004)CrossRefGoogle Scholar
  23. D. Peer, J. Karp, S. Hong, O. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology 2, 751–760 (2007)CrossRefGoogle Scholar
  24. M.P. Rahimy, S. Chin, R. Golshani, C. Aras, H. Borhani, H. Thompson, Polysulfone capillary fiber for intraocular drug delivery: In vitro and in vivo evaluations. J. Drug Target. 2, 2455–2480 (1994)CrossRefGoogle Scholar
  25. S. Sershen, J. West, Implantable, polymeric systems for modulated drug delivery. Adv. Drug Deliv. Rev. 54, 1225–1235 (2002)CrossRefGoogle Scholar
  26. K.M. Sivaraman, K. Bayrakceken, O. Ergeneman, S. Pane, T. Luhmann, H. Hall, B.J. Nelson, in Tailoring the Drug Loading Capacity of Polypyrrole Films for Use in Intraocular Biomicrorobots. Proc. of the 32nd International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC2010) (2010)Google Scholar
  27. W.J. Stark, S. Pratsinis, Aerosol flame reactors for manufacture of nanoparticles. Powder Technol. 126(2), 103–108 (2002)CrossRefGoogle Scholar
  28. S. Tao, T. Desai, Microfabricated drug delivery systems: from particles to pores. Adv. Drug Deliv. Rev. 55, 315–328 (2002)CrossRefGoogle Scholar
  29. L. Wenz, K. Memitt, S. Brown, A. Moet, In vitro biocompatibility of polyetheretherketone and polysulfone composites. J. Biomed. Mater. Res. 24, 207–215 (1990)CrossRefGoogle Scholar
  30. W. Yan, V. Hsiao, Y. Zheng, Y. Shariff, T. Gao, T. Huang, Towards nanoporous polymer thin film based drug-delivery systems. Thin Solid Films 517(5), 1794–1798 (2009)CrossRefGoogle Scholar
  31. J.P. Yang, P.L. Heremans, R. Hoefnagels, W. Tachelet, P. Dieltiens, F. Blockhuys, H.J. Geise, G. Borghs, Blue organic light-emitting diode using 1,4-bis(1,1-diphenyl-2-ethenyl)benzene as emitter. Synth. Met. 108(2000), 95–100 (1999)CrossRefGoogle Scholar
  32. T. Zhou, H. Lewis, R. Foster, S. Schwendeman, Development of a multiple-drug delivery implant for intraocular management of proliferative vitreoretinopathy. J. Control. Release 55, 281–295 (1998)CrossRefGoogle Scholar
  33. H. Zitter, H. Plent, The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility. J. Biomed. Mater. Res. 21, 881–896 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kartik M. Sivaraman
    • 1
  • Christoph Kellenberger
    • 2
  • Salvador Pané
    • 1
  • Olgaç Ergeneman
    • 1
  • Tessa Lühmann
    • 3
  • Norman A. Luechinger
    • 2
  • Heike Hall
    • 3
  • Wendelin J. Stark
    • 2
  • Bradley J. Nelson
    • 1
  1. 1.Multi Scale Robotics LabInstitute of Robotics and Intelligent Systems (IRIS)ZurichSwitzerland
  2. 2.Department of Chemistry and Applied BiosciencesFunctional Materials LaboratoryZurichSwitzerland
  3. 3.Department of MaterialsCell and BioMaterialsZurichSwitzerland

Personalised recommendations