Biomedical Microdevices

, Volume 14, Issue 3, pp 435–441 | Cite as

Enhanced anesthetic propofol biochips by modifying molecularly imprinted nanocavities of biosensors

  • Chien-Chong Hong
  • Chih-Chung Lin
  • Chian-Lang Hong
  • Po-Hsiang Chang


This paper presents enhanced performance of anesthetic propofol biosensors by modifying molecularly imprinted nanocavities of biosensors. In this work, the relationship between molecularly imprinted nanocavities and performance of molecularly imprinted polymer (MIP) films is investigated. The morphological control of imprinted nanocavities on molecularly imprinted biosensors is done by adjusting polymer composition and polymerization process. The newly developed MIP biosensors are characterized using our developed microfluidic biochips and optical microsystems. Experimental results show that the sizes of molecularly imprinted nanocavities were reduced to 10 to 14 nm from 10 to 25 nm. The roughness of the MIP film surface was reduced to 2.5 nm from 6.6 nm. Smaller imprinted nanocavities have better molecular separation performance. The specificity and linearity of the anesthetic biosensors could be enhanced by adjusting morphology of imprinted nanocavities. The linearity and the sensitivity of the microfluidic biochip with an improved on-chip MIP biosensor have been enhanced from 0.9341 to 49.5 mV/μg, respectively, to 0.9782 and 176.9 mV/μg. The anesthetic propofol biosensor presented in this study is applicable to numerous fluidic-based disposable biochips.


Microfluidic biochip Molecular imprinted nanocavity Biosensor Anesthetic propofol 



This research was supported by Chang Gung Memorial Hospital – National Tsing Hua University Joint Research (CMRPG380131 and CMRPG390131) and the National Science Council of Taiwan (NSC 98-2221-E-007-114).


  1. L. Bajpai, M. Varshney, C.N. Seubert, D.M. Dennis, J. Chromatogr. B 810, 291–296 (2004)Google Scholar
  2. J.J. BelBruno, A. Richter, S.E. Campbell, U.J. Gibson, Polymer 48, 1679–1687 (2007)CrossRefGoogle Scholar
  3. A. Bossi, S.A. Piletsky, E.V. Piletska, P.G. Righetti, A.P.F. Turner, Anal. Chem. 73, 5281–5286 (2001)CrossRefGoogle Scholar
  4. S.E. Campbell, M. Collins, L. Xie, J.J. BelBruno, Surf. Interface Anal. 41, 347–356 (2009)CrossRefGoogle Scholar
  5. G.P. González, P.F. Hernando, J.S.D. Alegría, Anal. Chim. Acta 557, 179–183 (2006)CrossRefGoogle Scholar
  6. J. Guitton, M. Desage, A. Lepape, C.S. Degoute, M. Manchon, J.L. Brazier, J. Chromatogr. B: Biomed. Sci. Appl. 669, 358–365 (1995)CrossRefGoogle Scholar
  7. K. Haupt, Anal. Chem. 75, 376–383 (2003)CrossRefGoogle Scholar
  8. K. Haupt, K. Mosbach, Chem. Rev. 100, 2495–2504 (2000)CrossRefGoogle Scholar
  9. C. He, Y. Long, J. Pan, K. Li, F. Liu, J. Biochem. Biophys. Methods 70, 133–150 (2007)CrossRefGoogle Scholar
  10. C.-C. Hong, P.-H. Chang, C.-C. Lin, C.-L. Hong, Biosens. Bioelectron. 25, 2058–2064 (2010)CrossRefGoogle Scholar
  11. B. Marsh, M. White, N. Morton, G.N.C. Kenny, Br. J. Anaesth. 67, 41–48 (1991)CrossRefGoogle Scholar
  12. J.D. Marty, M. Mauzac, Adv. Polym. Sci. 172, 1–35 (2005)CrossRefGoogle Scholar
  13. A.M. Rampey, R.J. Umpleby, G.T. Rushton, J.C. Iseman, R.N. Shah, K.D. Shimizu, Anal. Chem. 76, 1123–1133 (2004)CrossRefGoogle Scholar
  14. A. Richter, U.J. Gibson, M. Nowicki, J.J. BelBruno, J. Appl. Polym. Sci. 101, 2919–2926 (2006)CrossRefGoogle Scholar
  15. T.W. Schnider, C.F. Minto, S.L. Shafer, P.L. Gambus, C. Ansresen, D.B. Goodale, E.J. Youngs, Anesthesiology 90, 1502–1506 (1999)CrossRefGoogle Scholar
  16. D.A. Spivak, R. Simon, J. Campbell, Anal. Chim. Acta 504, 23–30 (2004)CrossRefGoogle Scholar
  17. D. Teshima, H. Nagahama, K. Makino, Y. Kataoka, R. Oishi, J. Clin. Pharm. Ther. 26, 381–385 (2001)CrossRefGoogle Scholar
  18. R. Vendamme, W. Eevers, M. Kaneto, Y. Minamizaki, Polym. J. 41, 1055–1066 (2009)CrossRefGoogle Scholar
  19. L. Ye, K. Mosbach, Chem. Mater. 20, 859–868 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Chien-Chong Hong
    • 1
  • Chih-Chung Lin
    • 2
  • Chian-Lang Hong
    • 3
    • 4
  • Po-Hsiang Chang
    • 1
  1. 1.BioMEMS and Nanobiosystems Lab., Department of Power Mechanical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Department of AnesthesiologyChang Gung Memorial HospitalLinkouTaiwan
  3. 3.Department of AnesthesiologyChang Gung Memorial HospitalChiayiTaiwan
  4. 4.Chang Gung University of Science and TechnologyChiayiTaiwan

Personalised recommendations