Biomedical Microdevices

, Volume 14, Issue 2, pp 385–399 | Cite as

A self-contained, programmable microfluidic cell culture system with real-time microscopy access

  • Peder Skafte-Pedersen
  • Mette Hemmingsen
  • David Sabourin
  • Felician Stefan Blaga
  • Henrik Bruus
  • Martin Dufva


Utilizing microfluidics is a promising way for increasing the throughput and automation of cell biology research. We present a complete self-contained system for automated cell culture and experiments with real-time optical read-out. The system offers a high degree of user-friendliness, stability due to simple construction principles and compactness for integration with standard instruments. Furthermore, the self-contained system is highly portable enabling transfer between work stations such as laminar flow benches, incubators and microscopes. Accommodation of 24 individual inlet channels enables the system to perform parallel, programmable and multiconditional assays on a single chip. A modular approach provides system versatility and allows many different chips to be used dependent upon application. We validate the system’s performance by demonstrating on-chip passive switching and mixing by peristaltically driven flows. Applicability for biological assays is demonstrated by on-chip cell culture including on-chip transfection and temporally programmable gene expression.


Programmable Cell culture Microfluidic Portable User-friendly Modular 



This work was supported by Grant No. 2106-08-0018 “ProCell”, under the Programme Commission on Strategic Growth Technologies, the Danish Agency for Science, Technology and Innovation.

Supplementary material

10544_2011_9615_MOESM1_ESM.pdf (1.9 mb)
ESM 1 (PDF 1.92 MB)


  1. H. Andersson, A. van den Berg, Lab on a Chip 6, 467–470 (2006)CrossRefGoogle Scholar
  2. L.A. Banaszynski, L.-C. Chen, L.A. Maynard-Smith, A.G.L. Ooi, T.J. Wandless, Cell 126, 995–1004 (2006)CrossRefGoogle Scholar
  3. A. Bancaud, G. Wagner, K.D. Dorfman, J.-L. Viovy, Anal. Chem. 77, 833–839 (2005)CrossRefGoogle Scholar
  4. A. Buchenauer, M. Funke, J. Büchs, W. Mokwa, U. Schnakenberg, J. Micromech. Microeng. 19, 074012 (2009)CrossRefGoogle Scholar
  5. A.J. Conde, D. Sabourin, P. Skafte-Pedersen and M. Dufva, Proceedings of the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (uTAS2011), 2–6 October 2011, Seattle, Washington, USA, eds. J.P. Landers, A. Herr, D. Juncker, N. Pamme, and J. Bienvenue, (CBMS, 2011) pp. 1621-1623 (2011)Google Scholar
  6. N. Futai, W. Gu, J.W. Song, S. Takayama, Lab on a Chip 6, 149–154 (2006)CrossRefGoogle Scholar
  7. R. Gomez-Sjöberg, A.A. Leyrat, D.M. Pirone, C.S. Chen, S.R. Quake, Anal. Chem. 79, 8557–8563 (2007)CrossRefGoogle Scholar
  8. W. Gu, X. Zhu, N. Futai, B.S. Cho, S. Takayama, PNAS 101, 15861–15866 (2004)CrossRefGoogle Scholar
  9. M. Hemmingsen, P. Skafte-Pedersen, D. Sabourin, R.F. Andersen, A.L. Sørensen, P. Collas and M. Dufva, Proceedings of the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (uTAS2011), 2–6 October 2011, Seattle, Washington, USA, eds. J.P. Landers, A. Herr, D. Juncker, N. Pamme, and J. Bienvenue, (CBMS, 2011) pp. 834–836 (2011)Google Scholar
  10. C.-C. Hsieh, S.-B. Huang, D.-B. Shieh, G.-B. Lee, P.-C. Wu, G.-B. Lee, Biomedical Microdevices 11, 903–913 (2009)CrossRefGoogle Scholar
  11. P.J. Hung, P.J. Lee, P. Sabounchi, R. Lin, L.P. Lee, Biotechnol. Bioeng. 89, 1–8 (2005)CrossRefGoogle Scholar
  12. L. Kim, M.D. Vahey, H.-Y. Lee, J. Voldman, Lab on a Chip 6, 394–406 (2006)CrossRefGoogle Scholar
  13. J.Y. Kim, H. Park, K.H. Kwon, J.Y. Park, J.Y. Baek, T.S. Lee, H.R. Song, Y.D. Park, S.H. Lee, Biomedical Microdevices 10, 11–20 (2008)CrossRefGoogle Scholar
  14. K.R. King, S. Wang, D. Irimia, A. Jayaraman, M. Toner, M.L. Yarmush, Lab on a Chip 7, 77–85 (2006)CrossRefGoogle Scholar
  15. Y.-K. Lee, P. Tabeling, C. Shih and C.-M. Ho, Proceedings of the ASME International Mechanical Engineering Congress and Exposition, November 5–10, 2000, Orlando, Florida, USA, pp. 505–511 (2000)Google Scholar
  16. P.J. Lee, N. Ghorashian, T.A. Gaige, P.J. Hung, J. Assoc. Lab. Autom. 12, 363–367 (2007)CrossRefGoogle Scholar
  17. S. Lindström, M. Eriksson, T. Vazin, J. Sandberg, J. Lundeberg, J. Frisén and H. Andersson-Svahn, PLOS ONE 4, -, (2009)Google Scholar
  18. M. Liu and Y.-C. Tai, Biomedical Microdevices, 1–11, (2010)Google Scholar
  19. J. Melin, S.R. Quake, Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)CrossRefGoogle Scholar
  20. I. Meyvantsson, J.W. Warrick, S. Hayes, A. Skoien, D.J. Beebe, Lab on a Chip 8, 717–724 (2008)CrossRefGoogle Scholar
  21. J.Y. Park, S. Takayama, S.-H. Lee, Integr. Biol. 2, 229–240 (2010)CrossRefGoogle Scholar
  22. S. Petronis, M. Stangegaard, C.B.V. Christensen, M. Dufva, Biotechniques 40, 368–376 (2006)CrossRefGoogle Scholar
  23. J.P. Puccinelli, X. Su, D.J. Beebe, J. Assoc. Lab. Autom. 15, 25–32 (2010)CrossRefGoogle Scholar
  24. S.A. Rani, B. Pitts, P.S. Stewart, Antimicrob. Agents Chemother. 49, 728–732 (2005)CrossRefGoogle Scholar
  25. D. Sabourin, D. Snakenborg, M. Dufva, Microfluidics and Nanofluidics 9, 87–93 (2010a)Google Scholar
  26. D. Sabourin, P. Skafte-Pedersen, V. Coman, M. Hemmingsen, J. Petersen, J.P. Kutter, J. Emneus, D. Snakenborg and M. Dufva, Proceedings of the 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences (uTAS2010), 3–7 October 2010, Groningen, The Netherlands, eds. S. Verporte, H. Andersson, J. Emneus, and N. Pamme (CBMS, 2010) pp. 166–168 (2010b)Google Scholar
  27. P. Skafte-Pedersen, D. Sabourin, M. Dufva, D. Snakenborg, Lab on a Chip 9, 3003–3006 (2009)CrossRefGoogle Scholar
  28. M. Stangegaard, S. Petronis, A.M. Jørgensen, C.B.V. Christensen, M. Dufva, Lab on a Chip 6, 1045–1051 (2006)CrossRefGoogle Scholar
  29. S. Sugiura, J.-I. Edahiro, K. Kikuchi, K. Sumaru, T. Kanamori, Biotechnol. Bioeng. 100, 1156–1165 (2008)CrossRefGoogle Scholar
  30. R.J. Taylor, D. Falconnet, A. Niemistö, S.A. Ramsey, S. Prinz, I. Shmulevich, T. Galitski, C.L. Hansen, Proc. Natl. Acad. Sci. 106, 3758–3763 (2009)CrossRefGoogle Scholar
  31. R. Truckenmüller, P. Henzi, D. Herrmann, V. Saile, W.K. Schomburg, Microsyst. Technol. 10, 372–374 (2004)CrossRefGoogle Scholar
  32. Y.-C. Tung, Y.-S. Torisawa, N. Futai, S. Takayama, Lab on a Chip 7, 1497–1503 (2007)CrossRefGoogle Scholar
  33. G. Velve-Casquillas, M.L. Berre, M. Piel, P.T. Tran, Nano Today 5, 28–47 (2010)CrossRefGoogle Scholar
  34. Z. Wang, M.-C. Kim, M. Marquez, T. Thorsen, Lab on a Chip 7, 740–745 (2007)CrossRefGoogle Scholar
  35. G.M. Whitesides, Lab on a Chip 11, 191–193 (2011)CrossRefGoogle Scholar
  36. M.-H. Wu, S.-B. Huang, G.-B. Lee, Lab on a Chip 10, 939–956 (2010)CrossRefGoogle Scholar
  37. J.H. Yeon, J.-K. Park, Biochip Journal 1, 17–27 (2007)Google Scholar
  38. E.W.K. Young, D.J. Beebe, Chem. Soc. Rev. 39, 1036–1048 (2010)CrossRefGoogle Scholar
  39. E.W.K. Young, C.A. Simmons, Lab on a Chip 10, 143–160 (2009)CrossRefGoogle Scholar
  40. Z.T.F. Yu, Z.T.F. Yu, K.-I. Kamei, H. Takahashi, X. Wang, G.W. He, C.G. Radu, H.-R. Tseng, Z.T.F. Yu, K.-I. Kamei, G.W. He, R. Silverman, C.G. Radu, O.N. Witte, C.J. Shu, O.N. Witte, O.N. Witte, K.-B. Lee, Biomedical Microdevices 11, 547–555 (2009)CrossRefGoogle Scholar
  41. B. Zhang, M.-C. Kim, T. Thorsen, Z. Wang, Biomedical Microdevices 11, 1233–1237 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Peder Skafte-Pedersen
    • 1
  • Mette Hemmingsen
    • 1
  • David Sabourin
    • 1
  • Felician Stefan Blaga
    • 2
  • Henrik Bruus
    • 1
  • Martin Dufva
    • 1
  1. 1.Department of Micro- and NanotechnologyTechnical University of Denmark, DTU NanotechKongens LyngbyDenmark
  2. 2.Department of Informatics and Mathematical ModellingTechnical University of Denmark, DTU InformaticsKongens LyngbyDenmark

Personalised recommendations