Biomedical Microdevices

, Volume 14, Issue 1, pp 179–186 | Cite as

Fast detection of genetic information by an optimized PCR in an interchangeable chip

  • Jinbo Wu
  • Rimantas Kodzius
  • Kang Xiao
  • Jianhua Qin
  • Weijia Wen


In this paper, we report the construction of a polymerase chain reaction (PCR) device for fast amplification and detection of DNA. This device consists of an interchangeable PCR chamber, a temperature control component as well as an optical detection system. The DNA amplification happens on an interchangeable chip with the volumes as low as 1.25 μl, while the heating and cooling rate was as fast as 12.7°C/second ensuring that the total time needed of only 25 min to complete the 35 cycle PCR amplification. An optimized PCR with two-temperature approach for denaturing and annealing (Td and Ta) of DNA was also formulated with the PCR chip, with which the amplification of male-specific sex determining region Y (SRY) gene marker by utilizing raw saliva was successfully achieved and the genetic identification was in-situ detected right after PCR by the optical detection system.


Point-of-Care Testing Molecular diagnostics Polymerase chain reaction (PCR) Microfluidic Chip 



The authors acknowledge the financial support provided by the Hong Kong Research Grants Council Grant No. HKUST 603608. This publication is based on work partially supported by Award No. SA-C0040/UK-C0016 made by King Abdullah University of Science and Technology (KAUST).

Supplementary material

10544_2011_9595_MOESM1_ESM.doc (1.9 mb)
Esm. 1 (DOC 1911 kb)


  1. R.C. Anderson, X. Su, G.J. Bogdan, J. Fenton, Nucleic Acids Res. 28, (2000)Google Scholar
  2. D.J. Blackbourn, E.T. Lennette, J. Ambroziak, D.V. Mourich, J.A. Levy, J. Infect. Dis. 177, 213 (1998)CrossRefGoogle Scholar
  3. Z. Chen, M.G. Mauk, J. Wang, W.R. Abrams, P.L.A.M. Corstjens, R.S. Niedbala, D. Malamud, H.H. Bau, Ann New York Acad Sci 1098, 429 (2007)CrossRefGoogle Scholar
  4. P. Crepin, L. Audry, Y. Rotivel, A. Gacoin, C. Caroff, H. Bourhy, J. Clin. Microbiol. 36, 1117 (1998)Google Scholar
  5. A.S. Daar, H. Thorsteinsdóttir, D.K. Martin, A.C. Smith, S. Nast, P.A. Singer, Nat. Genet 32, 229 (2002)CrossRefGoogle Scholar
  6. M.W.J. Dodds, D.A. Johnson, C. Yeh, J. Dent 33, 223 (2005)CrossRefGoogle Scholar
  7. L.A. Dodson, J.A. Kant, Mol. Cell. Probes 5, 21 (1991)CrossRefGoogle Scholar
  8. J. Eguchi, K. Ishihara, A. Watanabe, Y. Fukumoto, K. Okuda, Oral Microbiol. Immunol. 18, 156 (2003)CrossRefGoogle Scholar
  9. R. Kalendar, D. Lee, A.H. Schulman, Genes Genomes Genomics 3, 1 (2009)Google Scholar
  10. J. Khandurina, T.E. McKnight, S.C. Jacobson, L.C. Waters, R.S. Foote, J.M. Ramsey, Anal. Chem. 72, 2995 (2000)CrossRefGoogle Scholar
  11. E.T. Lagally, C.A. Emrich, R.A. Mathies, Lab Chip 1, 102 (2001)CrossRefGoogle Scholar
  12. E.T. Lagally, P.C. Simpson, R.A. Mathies, Sens Actuators B Chem 63, 138 (2000)CrossRefGoogle Scholar
  13. E.T. Lagelly, J.R. Scherer, R.G. Blazej, N.M. Toriello, B.A. Diep, M. Ramchandani, G.F. Sensabaugh, L.W. Riley, R.A. Mathies, Anal. Chem. 76, 3162 (2004)CrossRefGoogle Scholar
  14. D. Lee, S.H. Park, H. Yang, K. Chung, T.H. Yoon, S. Kim, K. Kim, Y.T. Kim, Lab Chip 4, 401 (2004)CrossRefGoogle Scholar
  15. K. Lien, C. Liu, P. Kuo, G. Lee, Anal. Chem 81, 4502 (2009)CrossRefGoogle Scholar
  16. M. Mahalanabis, J. Do, H. Almuayad, J.Y. Zhang, C.M. Klapperich, Biomed. Microdevices 12, 353 (2010)CrossRefGoogle Scholar
  17. D.P.K. Ng, D. Koh, S.G.L. Choo, V. Ng, Q. Fu, Clin. Chim. Acta 343, 191 (2004)CrossRefGoogle Scholar
  18. S.J. Park, J.Y. Kim, Y.G. Yang, S.H. Lee, J. Forensic Sci. 53, 335 (2008)CrossRefGoogle Scholar
  19. N. Ramalingam, H. Liu, C. Dai, Y. Jiang, H. Wang, Q. Wang, K.M. Hui, H. Gong, Biomed. Microdevices 11, 1007 (2009)CrossRefGoogle Scholar
  20. S.K. Sia, L.J. Kricka, Lab Chip 8, 1982 (2008)CrossRefGoogle Scholar
  21. F. Wang, M. Yang, M.A. Burns, Lab Chip 8, 88 (2008)CrossRefGoogle Scholar
  22. L.C. Waters, S.C. Jacobson, N. Kroutchinina, J. Khandurina, R.S. Foote, J.M. Ramsey, Anal. Chem. 70, 158 (1998)CrossRefGoogle Scholar
  23. F. Weighardt, G. Biamonti, S. Riva, Genome Res. 3, 77 (1993)CrossRefGoogle Scholar
  24. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Nature 442, 412 (2006)CrossRefGoogle Scholar
  25. S.S.W. Yeung, T.M.H. Lee, I. Hsing, Anal. Chem 80, 363 (2008)CrossRefGoogle Scholar
  26. D.S. Yoon, Y. Lee, Y. Lee, H.J. Cho, S.W. Sung, K.W. Oh, J. Cha, G. Lim, J Micromech. Microeng 12, 813 (2002)CrossRefGoogle Scholar
  27. Z. Zhao, Z. Cui, D. Cui, S. Xia, Sens. Actuat. A Phys. 108, 162 (2003)CrossRefGoogle Scholar
  28. R. Zhong, X. Pan, L. Jiang, Z. Dai, J. Qin, B. Lin, Electrophoresis 30, 1297 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jinbo Wu
    • 1
  • Rimantas Kodzius
    • 2
  • Kang Xiao
    • 3
  • Jianhua Qin
    • 4
  • Weijia Wen
    • 1
  1. 1.Nano Science and Nano Technology program and Physics DepartmentThe Hong Kong University of Science and TechnologyKowloonHong Kong
  2. 2.KAUST-HKUST Micro/Nanofluidic Joint LaboratoryThe Hong Kong University of Science and TechnologyKowloonHong Kong
  3. 3.Department of BiologyThe Hong Kong University of Science and TechnologyKowloonHong Kong
  4. 4.Dalian Institute of Chemical PhysicsChinese Academy of SciencesZhongshan RoadChina

Personalised recommendations