Skip to main content
Log in

Single-cell electroendocytosis on a micro chip using in situ fluorescence microscopy

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Electroendocytosis (EED), i.e. electric field-induced endocytosis, is a technique for bio-molecule and drug delivery to cells using a pulsed electric field lower than that applied in electroporation (EP). Different from EP in which nanometer-sized electropores appear on the plasma membrane lipid bilayer, EED induces cell membrane internalization and fission via endocytotic vesicles. In this study, we conduct comprehensive experimental study on the EED of HeLa cells using a micro chip and the corresponding endocytotic vesicles were visualized and investigated by using FM4-64 fluorescent dye and in situ fluorescence microscopy. The uptake of molecules by the EED of cells was characterized by average intracellular fluorescent intensity from a large number (>2,000) of single cells. The EED efficiency was determined as a function of three electric parameters (electric field strength, pulse duration, total electric treatment time). The EED efficiency as a function of electric field strength clearly shows biphasic characteristics at different experimental conditions. The EED experiments using cytoskeleton inhibitors illustrate unique mechanisms distinct from EP. This study provides a foundation for further on-chip study of the time-dependent mechanism of EED at the single-cell level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • H. Andersson, A. van den Berg, Sensor Actuat B-Chem 92(3), 315–325 (2003)

    Article  Google Scholar 

  • H. Andersson, A. van den Berg, Curr Opin Biotechnol 15(1), 44–49 (2004)

    Article  Google Scholar 

  • Y. Antov, A. Barbul, R. Korenstein, Exp Cell Res 297(2), 348–362 (2004)

    Article  Google Scholar 

  • Y. Antov, A. Barbul, H. Mantsur, R. Korenstein, Biophys J 88(3), 2206–2223 (2005)

    Article  Google Scholar 

  • G. Apodaca, Traffic 2(3), 149–159 (2001)

    Article  Google Scholar 

  • D.C. Bartoletti, G.I. Harrison, J.C. Weaver, FEBS Lett 256(1–2), 4–10 (1989)

    Article  Google Scholar 

  • S. Bolte, C. Talbot, Y. Boutte, O. Catrice, N.D. Read, B. Satiat-Jeunemaitre, J Microsc-Oxford 214(2), 159–173 (2004)

    Article  MathSciNet  Google Scholar 

  • P.J. Canatella, J.F. Karr, J.A. Petros, M.R. Prausnitz, Biophys J 80(2), 755–764 (2001)

    Article  Google Scholar 

  • D.C. Chang, B.M. Chassy, J.A. Saunders, A.E. Sowers, Guide to electroporation and electrofusion (Academic, San Diego, 1992), pp. 9–27

    Google Scholar 

  • S.D. Conner, S.L. Schmid, Nature 422(6927), 37–44 (2003)

    Article  Google Scholar 

  • J.D. Deng, K.H. Schoenbach, E.S. Buescher, P.S. Hair, P.M. Fox, S.J. Beebe, Biophys J 84(4), 2709–2714 (2003)

    Article  Google Scholar 

  • M.B. Fox, D.C. Esveld, A. Valero, R. Luttge, H.C. Mastwijk, P.V. Bartels, A. van den Berg, R.M. Boom, Anal Bioanal Chem 385(3), 474–485 (2006)

    Article  Google Scholar 

  • M.A. Gaffield, W.J. Betz, Nat Protoc 1(6), 2916–2921 (2006)

    Article  Google Scholar 

  • M. Glogauer, W. Lee, C.A.G. Mcculloch, Exp Cell Res 208(1), 232–240 (1993)

    Article  Google Scholar 

  • M. Golzio, J. Teissie, M.P. Rols, Proc Natl Acad Sci 99(3), 1292–1297 (2002)

    Article  Google Scholar 

  • R. P. Haugland, Handbook of fluorescent probes and research products, (Molecular Probes, Eugene, 2002), pp. 578, 683–684

  • H.Q. He, D.C. Chang, Y.K. Lee, Bioelectrochemistry 68(1), 89–97 (2006)

    Article  Google Scholar 

  • H.Q. He, D.C. Chang, Y.K. Lee, Bioelectrochemistry 70(2), 363–368 (2007)

    Article  Google Scholar 

  • H.Q. He, D.C. Chang, Y.K. Lee, Bioelectrochemistry 72(2), 161–168 (2008)

    Article  Google Scholar 

  • Y. Huang, B. Rubinsky, Sensor Actuat a-Phys 89(3), 242–249 (2001)

    Article  Google Scholar 

  • M. Jin, M.D. Snider, J Biol Chem 268(24), 18390–18397 (1993)

    Google Scholar 

  • M. Khine, A. Lau, C. Ionescu-Zanetti, J. Seo, L.P. Lee, Lab Chip 5(1), 38–43 (2005)

    Article  Google Scholar 

  • W. Krassowska, P.D. Filev, Biophys J 92(2), 404–417 (2007)

    Article  Google Scholar 

  • S. Kumari, S. Mg, S. Mayor, Cell Res 20(3), 256–275 (2010)

    Article  Google Scholar 

  • H. Lambert, R. Pankov, J. Gauthier, R. Hancock, Biochem Cell Biol 68(4), 729–734 (1990)

    Article  Google Scholar 

  • I. Mellman, Annu Rev Cell Dev Biol 12(1), 575–625 (1996)

    Article  Google Scholar 

  • E. Neumann, A.E. Sowers, C.A. Jordan, Electroporation and electrofusion in cell biology (Plenum Press, New York, 1989), pp. 61–82

    Google Scholar 

  • W.D. Niles, A.B. Malik, J Membr Biol 167(1), 85–101 (1999)

    Article  Google Scholar 

  • H. Noguchi, M. Matsushita, S. Matsumoto, Y.F. Lu, H. Matsui, S. Bonner-Weir, Biochem Biophys Res Commun 332(1), 68–74 (2005)

    Article  Google Scholar 

  • C.Y. Okada, M. Rechsteiner, Cell 29(1), 33–41 (1982)

    Article  Google Scholar 

  • A. Piasek, J. Thyberg, J Cell Sci 45(1), 59–71 (1980)

    Google Scholar 

  • Z.M. Qian, H.Y. Li, H.Z. Sun, K. Ho, Pharmacol Rev 54(4), 561–587 (2002)

    Article  Google Scholar 

  • M.P. Rols, P. Femenia, J. Teissie, Biochem Biophys Res Commun 208(1), 26–35 (1995)

    Article  Google Scholar 

  • Y. Rosemberg, R. Korenstein, Bioelectrochem Bioenerg 42(2), 275–281 (1997)

    Article  Google Scholar 

  • T.A. Vida, S.D. Emr, J Cell Biol 128(5), 779–792 (1995)

    Article  Google Scholar 

  • M.E. Ward, A. Murray, J Gen Microbiol 130(7), 1765–1780 (1984)

    Google Scholar 

  • J.N. Weinstein, S. Yoshikami, P. Henkart, R. Blumenthal, W.A. Hagins, Science 195(4277), 489–492 (1977)

    Article  Google Scholar 

  • G.M. Whitesides, Nature 442(7101), 368–373 (2006)

    Article  Google Scholar 

  • C.J.G. Yeh, B.L. Hsi, W.P. Faulk, J Immunol Methods 43(3), 269 (1981)

    Article  Google Scholar 

  • U. Zimmermann, R. Schnettler, G. Klock, H. Watzka, E. Donath, R.W. Glaser, Naturwissenschaften 77(11), 543–545 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hong Kong Research Grants Council (Project Ref No. 615907). The authors would like to thank Mr. Guangyao Yin, Mr. Wentao Wang, Dr. Peigang Deng, Ms. Inez Tsui, Mr. Wan Lap Yeung, and Mr. Allen Ng at HKUST for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Kuen Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 3262 kb)

Fig. S2

(DOC 697 kb)

Table S1

(DOC 43 kb)

(MPG 2228 kb)

(MPG 2032 kb)

(MPG 1710 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, R., Chang, D.C. & Lee, YK. Single-cell electroendocytosis on a micro chip using in situ fluorescence microscopy. Biomed Microdevices 13, 1063–1073 (2011). https://doi.org/10.1007/s10544-011-9576-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9576-9

Keywords

Navigation