Biomedical Microdevices

, Volume 13, Issue 5, pp 837–846 | Cite as

Microfabricated scaffold-guided endothelial morphogenesis in three-dimensional culture

  • Yuxin Liu
  • Dmitry A. Markov
  • John P. Wikswo
  • Lisa J. McCawley


Morphogenesis is a fundamental process by which new blood vessels are formed during angiogenesis. The ability to control angiogenesis would lead to improvements in tissue engineering constructions; indeed, the study of angiogenesis has numerous clinical applications, for example, in the investigation of metastatic cancer, peripheral and coronary vascular disease, and wound healing. Conventional in vitro organotypic cell culture approaches to these studies are limited primarily by their reliance on microvascular vessel formation through a random process of morphogenesis that lacks the spatial reproducibility and orientation needed for high-throughput drug testing. We have developed a bioreactor system for scaffold-guided tubulogenesis coupled with 3-D organotypic culture to spatially control vessel formation and its orientation. To create microchannels to guide microvessel formation, we fabricated rigid scaffolds using photolithography and light curing epoxy, and soft scaffolds formed by a polydimethylsiloxane (PDMS) stamp directly into collagen. Scaffolds seeded with dermal microvascular endothelial cells were placed between gelled layers of collagen containing dermal fibroblasts within a Transwell filter system and cultured for up to 2 weeks to allow for vessel maturation. Morphological analysis of thin tissue sections following standard histology and immunohistochemical detection of endothelial cells, fibroblasts, and basement membrane confirmed vessel formation along the microchannel walls with either scaffold. This system may also provide a means to explore revascularization within decellularized extracellular matrices, the culture of microvessel networks with controlled geometries, and possibly the spatial guidance of angiogenesis for interfacing with an external microfluidic supply network. As a new tool for guided angiogenesis, our approach introduces new possibilities for identification of anti-angiogenic therapeutics.


Primary endothelial cells Morphogenesis Engineered scaffold Bioreactor 3-D culture 



This research work was supported by the Department of Defense Breast Cancer Research Program Grant W81XWH-07-1-0507 and the Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE). Yuxin Liu thanks the WVU EPSCoR program funded by the National Science Foundation (EPS-1003907) for its support of her work on the manuscript at WVU. We thank Allison Price for her editorial assistance.


  1. A.F. Black, F. Berthod, N. L’Heureux, FASEB J 12, 1331 (1998)Google Scholar
  2. A.F. Black, V. Hudon, O. Damour, Cell Biol Toxicol 15, 81 (1999)CrossRefGoogle Scholar
  3. G.E. Davis, K.J. Bayless, A. Mavila, Anat Rec 268, 252 (2002)CrossRefGoogle Scholar
  4. D. Donovan, N.J. Brown, E.T. Bishop, Angiogenesis 4, 113 (2001)CrossRefGoogle Scholar
  5. N. Fournier, C.J. Doillon, Cell Biol Int Rep 16, 1251 (1992)CrossRefGoogle Scholar
  6. H. Geckil, F. Xu, X. Zhang, S. Moon, U. Demirci, Nanomedicine 5, 469 (2010)CrossRefGoogle Scholar
  7. W. He, Z.W. Ma, T. Yong, W.E. Teo, S. Ramakrishna, Biomaterials 26, 7606e15 (2005)Google Scholar
  8. S. Kanzawa, H. Endo, N. Shioya, Ann Plast Surg 30, 244 (1993)CrossRefGoogle Scholar
  9. N. Koike, D. Fukumura, O. Gralla, Nature 428, 138 (2004)CrossRefGoogle Scholar
  10. A. Kurane, D.T. Simionescu, N.R. Vyavahare, Biomaterials 28, 2830 (2007)CrossRefGoogle Scholar
  11. T.J. Lawley, Y. Kubota, J Invest Dermatol 93, 59S (1989)CrossRefGoogle Scholar
  12. M. Martins-Green, Q.J. Li, M. Yao, FASEB J 19, 222 (2005)Google Scholar
  13. H. Mertsching, T. Walles, M. Hofmann, Biomaterials 26, 6610 (2005)CrossRefGoogle Scholar
  14. V. Nehls, D. Drenckhahn, Histochem Cell Biol 104, 459 (1995)CrossRefGoogle Scholar
  15. L.E. Niklason, Science 286, 1493 (1999)CrossRefGoogle Scholar
  16. L.E. Niklason, J. Gao, W.M. Abbott, K.K. Hirschi, S. Houser, R. Marini, R. Langer, Science 284, 489 (1999)CrossRefGoogle Scholar
  17. L.L. Nguyen, P.A. D’Amor, Int Rev Cytol 204, 1 (2001)CrossRefGoogle Scholar
  18. T.H. Petersen, E.A. Calle, L. Zhao, E.J. Lee, L. Gui, M.B. Raredon, K. Gavrilov, T. Yi, Z.W. Zhuang, C. Breuer, E. Herzog, L.E. Niklason, Science 329, 538 (2010)CrossRefGoogle Scholar
  19. M. Radisic, M. Euloth, L. Yang, R. Langer, L.E. Freed, G. Vunjak-Novakovic, Biotechnol Bioeng 82, 403 (2003)CrossRefGoogle Scholar
  20. B. Vailhe, D. Vittet, J.J. Feige, Lab Invest 81, 439 (2001)Google Scholar
  21. O.C. Velazquez, R. Snyder, Z.J. Liu, R.M. Fairman, M. Herlyn, The FASEB Journal 16, 1316 (2002)Google Scholar
  22. R.B. Vernon, E.H. Sage, Microvasc Res 57, 118 (1999)CrossRefGoogle Scholar
  23. G. Vunjak-Novakovic, B. Obradovic, P. Bursac, I. Martin, R. Langer, L.E. Freed, Biotechnol Prog 14, 193 (1998)CrossRefGoogle Scholar
  24. N. Yamamura, R. Sudo, M. Ikeda, Tissue Eng 13, 1443 (2007)CrossRefGoogle Scholar
  25. E.K. Yim, I.C. Liao, K.W. Leong, Tissue Eng 13, 423 (2007)CrossRefGoogle Scholar
  26. Y. Zhu, Y. Cao, J. Pan, Y. Liu, J Biomed Mater Res Part B: Appl Biomater 92B, 508e16 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yuxin Liu
    • 1
  • Dmitry A. Markov
    • 2
    • 3
  • John P. Wikswo
    • 2
    • 3
    • 4
  • Lisa J. McCawley
    • 2
    • 5
  1. 1.Lane Department of Computer Science and Electrical Engineering, and WVNano InitiativeWest Virginia UniversityMorgantownUSA
  2. 2.Vanderbilt Institute for Integrative Biosystems Research and EducationVanderbilt UniversityNashvilleUSA
  3. 3.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
  4. 4.Departments of Molecular Physiology & Biophysics and Physics & AstronomyVanderbilt UniversityNashvilleUSA
  5. 5.Department of Cancer BiologyVanderbilt UniversityNashvilleUSA

Personalised recommendations