Biomedical Microdevices

, Volume 13, Issue 3, pp 475–483 | Cite as

A blocking-free microfluidic fluorescence heterogeneous immunoassay for point-of-care diagnostics

  • Peng Li
  • Alexander J. Sherry
  • Jairo A. Cortes
  • Constantine Anagnostopoulos
  • Mohammad Faghri


In this article, a rapid, sensitive, and disposable microfluidic immunosensor is presented for point-of-care (POC) testing and clinical diagnosis. For the first time, the blocking process is eliminated from a microfluidic heterogeneous immunoassay by using protein A functionalized polydimethylsiloxane microchannels. The nonspecific binding of the assay is maintained around the chip background level by using a pair of antibodies with different affinity to protein A under optimized experimental conditions. C-reactive protein (CRP), a biomarker for inflammation and cardiovascular disease risk assessment, is selected as a model analyte to demonstrate the sensitivity of this blocking-free microfluidic heterogeneous immunoassay. A four parameter logistic function is used to model and assess the data. The limit of detection obtained is 0.54 μg/mL, which is lower than the cut-off value for clinical diagnosis. The overall assay is completed in 5 min. The protein A modified PDMS chips wet-stored at 4°C can maintain biofunctionality up to 14 months. The developed blocking-free microfluidic heterogeneous immunoassay will immediately provide benefits to most immunosensing microdevices targeted for POC diagnostics by shortening analysis time, simplifying fluid transportation, reducing sample consumption, and lowering waste generation.


Microfluidic immunoassay Blocking-free Fluorescence detection C-reactive protein Point-of-care diagnostics Poly(dimethylsiloxane) 



This work was supported by the National Science Foundation (NSF-OISE-0530203) and the NSF EPSCoR Fellowship (to P. Li). We thank Paul W. Johnson at the RI Genomics and Sequencing Center for his technical assistance with the fluorescence imaging, and Kurt Broderick at the Microsystems Technology Laboratories of Massachusetts Institute of Technology for his technical assistance with the microfluidic chip fabrication.


  1. G.P. Anderson, M.A. Jacoby, F.S. Ligler, K.D. King, Biosens. Bioelectron. 12, 329 (1997)CrossRefGoogle Scholar
  2. A. Bange, H.B. Halsall, W.R. Heineman, Biosens. Bioelectron. 20, 2488 (2005)CrossRefGoogle Scholar
  3. A. Bhattacharyya, C.M. Klapperich, Biomed. Microdevices 9, 245 (2007)CrossRefGoogle Scholar
  4. C.D. Chin, V. Linder, S.K. Sia, Lab Chip 7, 41 (2007)CrossRefGoogle Scholar
  5. J.L. Clarke, J.L. Anderson, J.F. Carlquist, R.F. Roberts, B.D. Horne, T.L. Bair, M.J. Kolek, C.P. Mower, A.M. Crane, W.L. Roberts, J.B. Muhlestein, Am. J. Cardiol. 95, 155 (2005)CrossRefGoogle Scholar
  6. J.S. Collins, T.H. Goldsmith, J. Histochem. Cytochem. 29, 411 (1981)MATHCrossRefGoogle Scholar
  7. F. Darain, K.L. Gan, S.C. Tjin, Biomed. Microdevices 11, 653 (2009)CrossRefGoogle Scholar
  8. A. Dodge, K. Fluri, E. Verpoote, N.F. Rooij, Anal. Chem. 73, 3400 (2001)CrossRefGoogle Scholar
  9. R.A. Dudley, P. Edwards, R.P. Eklns, D.J. Flnney, I.G.M. McKenzie, G.M. Raab, D. Rodbard, R.P.C. Rodgers, Clin. Chem. 31, 1264 (1985)Google Scholar
  10. D.C. Duffy, J.C. McDonald, J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998)CrossRefGoogle Scholar
  11. D.T. Eddington, J.P. Puccinelli, D.J. Beebe, Sens. Actuators B 114, 170 (2006)CrossRefGoogle Scholar
  12. P. Esser, Nunc Bull. 9, 337 (1991)Google Scholar
  13. E. Eteshola, D. Leckband, Sens. Actuators B 72, 129 (2001)CrossRefGoogle Scholar
  14. A. Fleck, Proc. Nutr. Soc. 48, 347 (1989)CrossRefGoogle Scholar
  15. M.A. Holden, P.S. Cremer, Annu. Rev. Phys. Chem. 56, 369 (2005)CrossRefGoogle Scholar
  16. K. Hosokawa, M. Omata, K. Sato, M. Maeda, Lab Chip 6, 236 (2006)CrossRefGoogle Scholar
  17. G. Hu, Y. Gao, P.M. Sherman, D. Li, Microfluid. Nanofluid. 1, 346 (2005)CrossRefGoogle Scholar
  18. B. Huang, H. Wu, S. Kim, B.K. Kobilka, R.N. Zare, Lab Chip 6, 369 (2006)CrossRefGoogle Scholar
  19. E.P. Kartalov, J.F. Zhong, A. Scherer, S.R. Quake, C.R. Taylor, W.F. Anderson, Biotechniques 40, 85 (2006)CrossRefGoogle Scholar
  20. S. Lai, S. Wang, J. Luo, L.J. Lee, S. Yang, M.J. Madou, Anal. Chem. 76, 1832 (2004)CrossRefGoogle Scholar
  21. P. Li, A. Abolmaaty, T. Barek, C. Anagnostopoulos, M. Faghri, Proc. of the 6th ASME ICNMM, 1511 (2008)Google Scholar
  22. P. Li, A. Abolmaaty, C. D’Amore, S. Demming, C. Anagnostopoulos, M. Faghri, Microfluid. Nanofluid. 7, 593 (2009)CrossRefGoogle Scholar
  23. V. Linder, E. Verpoorte, W. Thormann, N.F. de Rooij, H. Sigrist, Anal. Chem. 73, 4181 (2001)CrossRefGoogle Scholar
  24. V. Linder, E. Verpoorte, N.F. de Rooij, H. Sigrist, W. Thormann, Electrophoresis 23, 740 (2002)MATHCrossRefGoogle Scholar
  25. H. Makamba, J.H. Kim, K. Lim, N. Park, J.H. Hahn, Electrophoresis 24, 3607 (2003)CrossRefGoogle Scholar
  26. K. Mohammad, A. Esen, J. Immuno. Meth. 117, 141 (1989)CrossRefGoogle Scholar
  27. F.B. Myers, L.P. Lee, Lab Chip 8, 2015 (2008)CrossRefGoogle Scholar
  28. M.C. Peoples, H.T. Karnes, Anal. Chem. 80, 3853 (2008)CrossRefGoogle Scholar
  29. J. Pultar, U. Sauer, P. Domnanich, C. Preininger, Biosens. Bioelectron. 24, 1456 (2009)CrossRefGoogle Scholar
  30. S.R. Quake, A. Scherer, Science 290, 1536 (2000)CrossRefGoogle Scholar
  31. P.M. Ridker, Am. Heart J. 148, S19 (2004)CrossRefGoogle Scholar
  32. W. Roberts, L. Moulton, T.C. Law, G. Farrow, M.C. Anderson, J. Savory, N. Rifai, Clin. Chem. 47, 418 (2001)Google Scholar
  33. O. Rogowski, Y. Vered, I. Shapira, M. Hirsh, V. Zakut, S. Berliner, Clin. Chim. Acta 358, 151 (2005)CrossRefGoogle Scholar
  34. L. Simon, F. Gauvin, D.K. Amre, P. Saint-Louis, J. Lacroix, Clin. Infect. Dis. 39, 206 (2004)CrossRefGoogle Scholar
  35. M.W. Toepke, D.J. Beebe, Lab Chip 6, 1484 (2006)CrossRefGoogle Scholar
  36. R. Wang, Y.L. Yang, M. Qin, L.K. Wang, L. Yu, B. Shao, M.Q. Qiao, C. Wang, X.Z. Feng, Chem. Mater. 19, 3227 (2007)CrossRefGoogle Scholar
  37. B. Weigl, G. Domingo, P. LaBarre, J. Gerlach, Lab Chip 8, 1999 (2008)CrossRefGoogle Scholar
  38. M. Wolf, D. Juncker, B. Michel, P. Hunziker, E. Delamarche, Biosens. Bioelectron. 19, 1193 (2004)CrossRefGoogle Scholar
  39. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Nature 442, 412 (2006)CrossRefGoogle Scholar
  40. T. Yang, S. Jung, H. Mao, P. Cremer, Anal. Chem. 73, 165 (2001)CrossRefGoogle Scholar
  41. Y.-N. Yang, H.-I. Lin, J.-H. Wang, S.-C. Shiesh, G.B. Lee, Biosens. Bioelectron. 24, 3091 (2009)CrossRefGoogle Scholar
  42. L. Yu, C.M. Li, Y. Liu, J. Gao, W. Wang, Y. Gan, Lab Chip 9, 1243 (2009)CrossRefGoogle Scholar
  43. J. Zhou, A.V. Ellis, N.H. Voelcker, Electrophoresis 31, 2 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Peng Li
    • 1
  • Alexander J. Sherry
    • 1
  • Jairo A. Cortes
    • 1
  • Constantine Anagnostopoulos
    • 1
  • Mohammad Faghri
    • 1
  1. 1.Department of Mechanical, Industrial and Systems EngineeringUniversity of Rhode IslandKingstonUSA

Personalised recommendations