Advertisement

Biomedical Microdevices

, Volume 13, Issue 2, pp 393–401 | Cite as

An automated microfluidic sample preparation system for laser scanning cytometry

  • Eric Wu
  • Vidya Menon
  • William Geddie
  • Yu Sun
Article

Abstract

Laser scanning cytometry (LSC) is emerging as a clinical tool. In one application a “Clatch” slide, named after the inventor, is used in conjunction with LSC for cell surface marker immunophenotyping of patient samples. The slide requires time consuming and laborious pipetting steps, making a test tedious and prone to handling errors. The Clatch slide also uses a significant number of cells, limiting the number of analyses on paucicellular samples. This paper presents an automated microfluidic system consisting of a control circuit, a microfluidic system, and an aluminum frame, capable of performing immunophenotyping procedures. This prototype system reduces 36 pipetting steps to 1, reduces the amount of cell sample from 180 μL to 56 μL, and shortens the time used by technicians.

Keywords

Laser scanning cytometry Microfabrication Microfluidic dispenser Microfluidic connection Microfluidic module Capillary burst valve Passive valve Porous membrane Sample preparation Automation 

References

  1. J. Chen, P. Huang, M. Lin, Microfluid. Nanofluid. 4, 427 (2008)CrossRefGoogle Scholar
  2. H. Cho, H. Kim, J. Kang, T. Kim, J. Colloid Interface Sci. 306, 379–385 (2007)CrossRefGoogle Scholar
  3. K. Chung, D. Lee, H. Yang, S. Kim, H. Po, Proc. of SPIE 5651, 204–213 (2005)CrossRefGoogle Scholar
  4. R. Clatch, J. Foreman, J. Walloch, Cytometry ((Communications in Clinical Cytometry) 34, 3–16 (1998)CrossRefGoogle Scholar
  5. A. Gersner, A. Mittag, W. Laffers, I. Dahnert, D. Lenz, F. Bootz, J. Bocsi, A. Tarnok, J. Immunol. Meth. 311, 130–128 (2006)CrossRefGoogle Scholar
  6. Y. Hsu, T. Chen, Biomed. Microdevices 9, 513–522 (2007)MathSciNetCrossRefGoogle Scholar
  7. H. Klank, J. Kutter, O. Geschke, Lab Chip 2, 242–246 (2002)CrossRefGoogle Scholar
  8. C. Lin, C. Chao, C. Lan, Sens. Actuators, B 121, 698–705 (2007)CrossRefGoogle Scholar
  9. X. Sun, B. Peeni, W. Yang, H. Becerril, A. Woolley, J. Chromatogr. A 1162, 162–166 (2007)CrossRefGoogle Scholar
  10. C. Tsao, D. Devoe, Microfluid. Nanofluid. 6, 1–16 (2009)CrossRefGoogle Scholar
  11. B. Yang, Q. Lin, Sens. Actuators 134, 189–193 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada
  2. 2.Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
  3. 3.Toronto General HospitalTorontoCanada

Personalised recommendations