Biomedical Microdevices

, Volume 13, Issue 1, pp 221–230 | Cite as

Electrochemically switchable platform for the micro-patterning and release of heterotypic cell sheets

  • Orane Guillaume-Gentil
  • Michael Gabi
  • Marcy Zenobi-Wong
  • Janos Vörös


This article describes a dynamic platform in which the biointerfacial properties of micro-patterned domains can be switched electrochemically through the spatio-temporally controlled dissolution and adsorption of polyelectrolyte coatings. Insulating SU-8 micro-patterns created on a transparent indium tin oxide electrode by photolithography allowed for the local control over the electrochemical dissolution of polyelectrolyte mono- and multilayers, with polyelectrolytes shielded from the electrochemical treatment by the underlying photoresist stencil. The platform allowed for the creation of micro-patterned cell co-cultures through the electrochemical removal of a non-fouling polyelectrolyte coating and the localized adsorption of a cell adhesive one after attachment of the first cell population. In addition, the use of weak adhesive polyelectrolyte coatings on the photoresist domains allowed for the detachment of a contiguous heterotypic cell sheet upon electrochemical trigger. Cells grown on the ITO domains peeled off upon electrochemical dissolution of the sacrificial polyelectrolyte substrate, whereas adjacent cell areas on the insulated weakly adhesive substrate easily detached through the contractile force generated by neighboring cells. This electrochemical strategy for the micro-patterning and detachment of heterotypic cell sheets combines simplicity, precision and versatility, and presents great prospects for the creation of cellular constructs which mimic the cellular complexity of native tissues.


Indium tin oxide electrode SU-8 photoresist Micro-patterning Photolithography Cell co-cultures Heterotypic cell sheet engineering 



The authors thank Stephen Wheeler and Martin Lanz for technical assistance and the Competence Centre for Material Science and Technology (CCMX), ETH Zurich, the Marie Heim-Vögtlin grant No. PMPDP2_122997 from the Swiss National Science Foundation, and the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° NMP4-SL-2009-229292 (Find&Bind) for financial support.


  1. S.N. Bhatia, M.L. Yarmush, M. Toner, J. Biomed. Mater. Res. 34, 189–199 (1997)CrossRefGoogle Scholar
  2. S.N. Bhatia, U.J. Balis, M.L. Yarmush, M. Toner, Biotechnol. Prog. 14, 378–387 (1998)CrossRefGoogle Scholar
  3. S.N. Bhatia, U.J. Balis, M.L. Yarmush, M. Toner, FASEB J. 13, 1883–1900 (1999)Google Scholar
  4. T. Boudou, T. Crouzier, K. Ren, G. Blin, C. Picart, Adv. Mater. 22, 441–467 (2010)CrossRefGoogle Scholar
  5. F. Boulmedais, C.S. Tang, B. Keller, J. Vörös, Adv. Funct. Mater. 16, 63–70 (2006)CrossRefGoogle Scholar
  6. D.T. Chiu, N.L. Jeon, S. Huang, R.S. Kane, C.J. Wargo, I.S. Choi, D.E. Ingber, G.M. Whitesides, Proc. Natl Acad. Sci. USA 97, 2408–2413 (2000)CrossRefGoogle Scholar
  7. G. Decher, Science 277, 1232–1237 (1997)CrossRefGoogle Scholar
  8. D.L. Elbert, J.A. Hubbell, Chem. Biol. 5, 177–183 (1998)CrossRefGoogle Scholar
  9. I. Elloumi-Hannachi, M. Yamato, T. Okano, J. Intern. Med. 267, 54–70 (2010)CrossRefGoogle Scholar
  10. S. Faraasen, J. Vörös, G. Csúcs, M. Textor, H.P. Merkle, E. Walter, Pharm. Res. 20, 237–246 (2003)CrossRefGoogle Scholar
  11. A. Folch, M. Toner, Biotechnol. Prog. 14, 388–392 (1998)CrossRefGoogle Scholar
  12. A. Folch, A. Ayon, O. Hurtado, M.A. Schmidt, M. Toner, J. Biomech. Eng. 121, 28–34 (1999)CrossRefGoogle Scholar
  13. A. Folch, B.-H. Jo, O. Hurtado, D.J. Beebe, M. Toner, J. Biomed. Mater. Res. 52, 346–353 (2000)CrossRefGoogle Scholar
  14. J. Fukuda, A. Khademhosseini, J. Yeh, G. Eng, J. Cheng, O.C. Farokhzad, R. Langer, Biomaterials 27, 1479–1486 (2006)CrossRefGoogle Scholar
  15. M. Gabi, T. Sannomiya, A. Larmagnac, M. Puttaswamy, J. Vörös, Integr. Biol. 1, 108–115 (2009)CrossRefGoogle Scholar
  16. O. Guillaume-Gentil, Y. Akiyama, M. Schuler, C. Tang, M. Textor, M. Yamato, T. Okano, J. Vörös, Adv. Mater. 20, 560–565 (2008)CrossRefGoogle Scholar
  17. O. Guillaume-Gentil, N. Graf, F. Boulmedais, P. Schaaf, J. Vörös, T. Zambelli, Soft Matter 6, 4246–4254 (2010)CrossRefGoogle Scholar
  18. N.-P. Huang, J. Vörös, S.M. De Paul, M. Textor, N.D. Spencer, Langmuir 18, 220–230 (2001)CrossRefGoogle Scholar
  19. E.E. Hui, S.N. Bhatia, Proc. Natl. Acad. Sci. 104, 5722–5726 (2007)CrossRefGoogle Scholar
  20. A. Khademhosseini, K.Y. Suh, J.M. Yang, G. Eng, J. Yeh, S. Levenberg, R. Langer, Biomaterials 25, 3583–3592 (2004)CrossRefGoogle Scholar
  21. S. Kidambi, L. Sheng, M.L. Yarmush, M. Toner, I. Lee, C. Chan, Macromol. Biosci. 7, 344–353 (2007)CrossRefGoogle Scholar
  22. S. Kidambi, I. Lee, C. Chan, Adv. Funct. Mater. 18, 294–301 (2008)CrossRefGoogle Scholar
  23. E.-J. Lee, E.W.L. Chan, M.N. Yousaf, Chembiochem 10, 1648–1653 (2009)CrossRefGoogle Scholar
  24. E. Ostuni, R. Kane, C.S. Chen, D.E. Ingber, G.M. Whitesides, Langmuir 16, 7811–7819 (2000)CrossRefGoogle Scholar
  25. C. Picart, P. Lavalle, P. Hubert, F.J.G. Cuisinier, G. Decher, P. Schaaf, J.C. Voegel, Langmuir 17, 7414–7424 (2001)CrossRefGoogle Scholar
  26. C. Picart, J. Mutterer, L. Richert, Y. Luo, G.D. Prestwich, P. Schaaf, J.C. Voegel, P. Lavalle, Proc. Natl Acad. Sci. USA 99, 12531–12535 (2002)CrossRefGoogle Scholar
  27. T. Sasagawa, T. Shimizu, S. Sekiya, Y. Haraguchi, M. Yamato, Y. Sawa, T. Okano, Biomaterials 31, 1646–1654 (2010)CrossRefGoogle Scholar
  28. J.B. Schlenoff, S.T. Dubas, T. Farhat, Langmuir 16, 9968–9969 (2000)CrossRefGoogle Scholar
  29. S.S. Shah, M.C. Howland, L.-J. Chen, J. Silangcruz, S.V. Verkhoturov, E.A. Schweikert, A.N. Parikh, A. Revzin, ACS Appl. Mater. Interfaces 1, 2592–2601 (2009)CrossRefGoogle Scholar
  30. Z. Tang, Y. Wang, P. Podsiadlo, N.A. Kotov, Adv. Mater. 18, 3203–3224 (2006)CrossRefGoogle Scholar
  31. S. Tosatti, S.M.D. Paul, A. Askendal, S. VandeVondele, J.A. Hubbell, P. Tengvall, M. Textor, Biomaterials 24, 4949–4958 (2003)CrossRefGoogle Scholar
  32. Y. Tsuda, A. Kikuchi, M. Yamato, A. Nakao, Y. Sakurai, M. Umezu, T. Okano, Biomaterials 26, 1885–1893 (2005)CrossRefGoogle Scholar
  33. Y. Tsuda, A. Kikuchi, M. Yamato, G. Chen, T. Okano, Biochem. Biophys. Res. Commun. 348, 937–944 (2006)CrossRefGoogle Scholar
  34. S. VandeVondele, J. Vörös, J.A. Hubbell, Biotechnol. Bioeng. 82, 784–790 (2003)CrossRefGoogle Scholar
  35. G. Voskerician, M.S. Shive, R.S. Shawgo, H.V. Recum, J.M. Anderson, M.J. Cima, R. Langer, Biomaterials 24, 1959–1967 (2003)CrossRefGoogle Scholar
  36. G. Weder, O. Guillaume-Gentil, N. Matthey, F. Montagne, H. Heinzelmann, J. Vörös, M. Liley, Biomaterials 31, 6436–6443 (2010)CrossRefGoogle Scholar
  37. D. Wright, B. Rajalingam, S. Selvarasah, M.R. Dokmeci, A. Khademhosseini, Lab Chip 7, 1272–1279 (2007)CrossRefGoogle Scholar
  38. M. Yamato, O.H. Kwon, M. Hirose, A. Kikuchi, T. Okano, J. Biomed. Mater. Res. 55, 137–140 (2001)CrossRefGoogle Scholar
  39. M. Yamato, C. Konno, M. Utsumi, A. Kikuchi, T. Okano, Biomaterials 23, 561–567 (2002)CrossRefGoogle Scholar
  40. M.N. Yousaf, B.T. Houseman, M. Mrksich, Proc. Natl Acad. Sci. USA 98, 5992–5996 (2001)CrossRefGoogle Scholar
  41. G. Zhen, D. Falconnet, E. Kuennemann, J. Vörös, N. Spencer, M. Textor, S. Zürcher, Adv. Funct. Mater. 16, 243–251 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Orane Guillaume-Gentil
    • 1
  • Michael Gabi
    • 1
  • Marcy Zenobi-Wong
    • 1
  • Janos Vörös
    • 1
  1. 1.Laboratory of Biosensors & BioelectronicsInstitute for Biomedical Engineering, ETH ZurichZurichSwitzerland

Personalised recommendations