Biomedical Microdevices

, Volume 12, Issue 6, pp 1027–1041 | Cite as

A low resistance microfluidic system for the creation of stable concentration gradients in a defined 3D microenvironment

  • Ovid C. Amadi
  • Matthew L. Steinhauser
  • Yuichi Nishi
  • Seok Chung
  • Roger D. Kamm
  • Andrew P. McMahon
  • Richard T. Lee


The advent of microfluidic technology allows control and interrogation of cell behavior by defining the local microenvironment with an assortment of biochemical and biophysical stimuli. Many approaches have been developed to create gradients of soluble factors, but the complexity of such systems or their inability to create defined and controllable chemical gradients has limited their widespread implementation. Here we describe a new microfluidic device which employs a parallel arrangement of wells and channels to create stable, linear concentration gradients in a gel region between a source and a sink well. Pressure gradients between the source and sink wells are dissipated through low resistance channels in parallel with the gel channel, thus minimizing the convection of solute in this region. We demonstrate the ability of the new device to quantitate chemotactic responses in a variety of cell types, yielding a complete profile of the migratory response and representing the total number of migrating cells and the distance each cell has migrated. Additionally we show the effect of concentration gradients of the morphogen Sonic hedgehog on the specification of differentiating neural progenitors in a 3-dimensional matrix.


Microfluidic Concentration gradient Migration Chemotaxis Morphogen gradient Morphogenesis 



This work was supported by National Institute of Health Grants EB003805, AG032977, T32EB006348, R01 AG032977, R37 NS054364, and F31HL095342.

Supplementary material

10544_2010_9457_MOESM1_ESM.doc (58 kb)
ESM (DOC 58 kb)
10544_2010_9457_Fig6_ESM.jpg (319 kb)
Fig. S1

Fig. S1 Rearranged RC circuits used to calculate the time constants for pressure dissipation in the RC device. (a) This circuit represents the path from the source well to the sink well that passes through the reservoir channels and the source and sink reservoir. (b) This circuit represents the path from the source well to sink well that passes through the high resistance gel region (JPEG 318 kb)


  1. A. Abbott, Cell culture: biology’s new dimension. Nature 424(6951), 870–872 (2003)CrossRefGoogle Scholar
  2. V.V. Abhyankar, M.A. Lokuta et al., Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab. Chip 6(3), 389–393 (2006)CrossRefGoogle Scholar
  3. V.V. Abhyankar, M.W. Toepke et al., A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab. Chip 8(9), 1507–1515 (2008)CrossRefGoogle Scholar
  4. D. Amarie, J.A. Glazier et al., Compact microfluidic structures for generating spatial and temporal gradients. Anal. Chem. 79(24), 9471–9477 (2007)CrossRefGoogle Scholar
  5. J. Atencia, J. Morrow et al., The microfluidic palette: a diffusive gradient generator with spatio-temporal control. Lab. Chip 9(18), 2707–2714 (2009)CrossRefGoogle Scholar
  6. E. Biddiss, D. Li, Electrokinetic generation of temporally and spatially stable concentration gradients in microchannels. J. Colloid Interface Sci. 288(2), 606–615 (2005)CrossRefGoogle Scholar
  7. K.E. Bornfeldt, E.W. Raines, T. Nakano, L.M. Graves, E.G. Krebs, R. Ross, Insulin-like growth factor-I and platelet-derived growth factor-BB induce directed migration of human arterial smooth muscle cells via signaling pathways that are distinct from those of proliferation. J. Clin. Invest. 93(3), 1266–1274 (1994)CrossRefGoogle Scholar
  8. S. Boyden, The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 113(3), 453–466 (1962)CrossRefGoogle Scholar
  9. J. Briscoe, Making a grade: Sonic Hedgehog signalling and the control of neural cell fate. EMBO J. 28(5), 457–465 (2009)CrossRefGoogle Scholar
  10. S.-Y. Cheng, S. Heilman et al., A hydrogel-based microfluidic device for the studies of directed cell migration. Lab. Chip 7(6), 763–769 (2007)CrossRefGoogle Scholar
  11. J.Y. Cheng, M.H. Yen et al., A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier. Biomicrofluidics 2(2), 24105 (2008)CrossRefGoogle Scholar
  12. B.G. Chung, L.A. Flanagan et al., Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab. Chip 5(4), 401–406 (2005)CrossRefGoogle Scholar
  13. B.G. Chung, A. Manbachi et al., A gradient-generating microfluidic device for cell biology. J. Vis. Exp. 7, 271 (2007)Google Scholar
  14. S. Chung, R. Sudo et al., Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab. Chip 9(2), 269–275 (2009)CrossRefGoogle Scholar
  15. G.A. Cooksey, C.G. Sip et al., A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab. Chip 9(3), 417–426 (2009)CrossRefGoogle Scholar
  16. E. Cukierman, R. Pankov et al., Taking cell-matrix adhesions to the third dimension. Science 294(5547), 1708–1712 (2001)CrossRefGoogle Scholar
  17. E. Dessaud, L.L. Yang et al., Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450(7170), 717–720 (2007)CrossRefGoogle Scholar
  18. E. Dessaud, A.P. McMahon et al., Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135(15), 2489–2503 (2008)CrossRefGoogle Scholar
  19. J. Diao, L. Young et al., A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab. Chip 6(3), 381–388 (2006)CrossRefGoogle Scholar
  20. Y. Du, J. Shim et al., Rapid generation of spatially and temporally controllable long-range concentration gradients in a microfluidic device. Lab. Chip 9(6), 761–767 (2009)CrossRefGoogle Scholar
  21. D.L. Englert, M.D. Manson et al., Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Appl. Environ. Microbiol. 75(13), 4557–4564 (2009)CrossRefGoogle Scholar
  22. S. Even-Ram, K.M. Yamada, Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17(5), 524–532 (2005)CrossRefGoogle Scholar
  23. S. Fok, P. Domachuk et al., Planar microfluidic chamber for generation of stable and steep chemoattractant gradients. Biophys. J. 95(3), 1523–1530 (2008)CrossRefGoogle Scholar
  24. C.W. Frevert, G. Boggy et al., Measurement of cell migration in response to an evolving radial chemokine gradient triggered by a microvalve. Lab. Chip 6(7), 849–856 (2006)CrossRefGoogle Scholar
  25. P. Friedl, B. Weigelin, Interstitial leukocyte migration and immune function. Nat. Immunol. 9(9), 960–969 (2008)CrossRefGoogle Scholar
  26. G.M. Gabriel, K. John, Endothelial cell protrusion and migration in three-dimensional collagen matrices. Cell Motil. Cytoskeleton 63(2), 101–115 (2006)CrossRefGoogle Scholar
  27. J.S. Garanich, M. Pahakis et al., Shear stress inhibits smooth muscle cell migration via nitric oxide-mediated downregulation of matrix metalloproteinase-2 activity. Am. J. Physiol. Heart Circ. Physiol. 288(5), H2244–2252 (2005)CrossRefGoogle Scholar
  28. M. Ghibaudo, L. Trichet et al., Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration. Biophys. J. 97(1), 357–368 (2009)CrossRefGoogle Scholar
  29. T. Glawdel, C. Elbuken et al., Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)-towards water toxicity testing. Lab. Chip 9(22), 3243–3250 (2009)CrossRefGoogle Scholar
  30. U. Haessler, Y. Kalinin et al., An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed. Microdevices 11(4), 827–835 (2009)CrossRefGoogle Scholar
  31. X. Hai-Qing, M. Elizabeth et al., A Subset of ES-Cell-derived neural cells marked by gene targeting. Stem Cells 21(1), 41–49 (2003)CrossRefGoogle Scholar
  32. K. Hattori, S. Sugiura et al., Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. Lab. Chip 9(12), 1763–1772 (2009)CrossRefGoogle Scholar
  33. J. He, Y. Du et al., Rapid generation of biologically relevant hydrogels containing long-range chemical gradients. Adv. Funct. Mater. 20(1), 131–137 (2010)CrossRefGoogle Scholar
  34. P. Herzmark, K. Campbell et al., Bound attractant at the leading vs. the trailing edge determines chemotactic prowess. PNAS 104(33), 13349–54 (2007)CrossRefGoogle Scholar
  35. J. Hesselgesser, M. Liang et al., Identification and characterization of the CXCR4 chemokine receptor in human T cell lines: ligand binding, biological activity, and HIV-1 infectivity. J. Immunol. 160(2), 877–883 (1998)Google Scholar
  36. D. Irimia, D.A. Geba et al., Universal microfluidic gradient generator. Anal. Chem. 78(10), 3472–3477 (2006)CrossRefGoogle Scholar
  37. H. Jeon, Y. Lee et al., Quantitative analysis of single bacterial chemotaxis using a linear concentration gradient microchannel. Biomed. Microdevices 11(5), 1135–1143 (2009)CrossRefGoogle Scholar
  38. P. Joong Yull, K. Suel-Kee et al., Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient. Stem Cells 27(11), 2646–2654 (2009)CrossRefGoogle Scholar
  39. Y.V. Kalinin, L. Jiang et al., Logarithmic sensing in escherichia coli bacterial chemotaxis. Biophys. J. 96(6), 2439–2448 (2009)CrossRefGoogle Scholar
  40. T. Kang, J. Han et al., Concentration gradient generator using a convective-diffusive balance. Lab. Chip 8(7), 1220–1222 (2008)CrossRefGoogle Scholar
  41. T.M. Keenan, A. Folch, Biomolecular gradients in cell culture systems. Lab. Chip 8(1), 34–57 (2008)CrossRefGoogle Scholar
  42. D. Kim, M.A. Lokuta et al., Selective and tunable gradient device for cell culture and chemotaxis study. Lab. Chip 9(12), 1797–1800 (2009a)CrossRefGoogle Scholar
  43. T. Kim, M. Pinelis et al., Generating steep, shear-free gradients of small molecules for cell culture. Biomed. Microdevices 11(1), 65–73 (2009b)CrossRefGoogle Scholar
  44. D.J. Laird, U.H. von Andrian et al., Stem cell trafficking in tissue development, growth, and disease. Cell 132(4), 612–630 (2008)CrossRefGoogle Scholar
  45. J. Lee, M.J. Cuddihy et al., Three-dimensional cell culture matrices: state of the art. Tissue Eng. B Rev. 14(1), 61–86 (2008)CrossRefGoogle Scholar
  46. N. Li Jeon, H. Baskaran et al., Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotech. 20(8), 826–830 (2002)Google Scholar
  47. C.-W. Li, R. Chen et al., Generation of linear and non-linear concentration gradients along microfluidic channel by microtunnel controlled stepwise addition of sample solution. Lab. Chip 7(10), 1371–1373 (2007)CrossRefGoogle Scholar
  48. G. Li, J. Liu et al., Multi-molecular gradients of permissive and inhibitory cues direct neurite outgrowth. Ann. Biomed. Eng. 36(6), 889–904 (2008)CrossRefGoogle Scholar
  49. F. Lin, E.C. Butcher, T-cell chemotaxis in a simple microfluidic device. Lab. Chip 6(11), 1462–1469 (2006)CrossRefGoogle Scholar
  50. F. Lin, W. Saadi et al., Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab. Chip 4(3), 164–167 (2004)CrossRefGoogle Scholar
  51. Y. Liu, J. Sai et al., Microfluidic switching system for analyzing chemotaxis responses of wortmannin-inhibited HL-60 cells. Biomed. Microdevices 10(4), 499–507 (2008)CrossRefGoogle Scholar
  52. P.J. Mack, Y. Zhang et al., Biomechanical regulation of endothelium-dependent events critical for adaptive remodeling. J. Biol. Chem. 284(13), 8412–8420 (2009)CrossRefGoogle Scholar
  53. H. Mao, P.S. Cremer et al., A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl Acad. Sci. USA 100(9), 5449–5454 (2003)CrossRefGoogle Scholar
  54. J.-A. Montero, C.-P. Heisenberg, Gastrulation dynamics: cells move into focus. Trends Cell Biol. 14(11), 620–627 (2004)CrossRefGoogle Scholar
  55. B. Mosadegh, C. Huang et al., Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels. Langmuir 23(22), 10910–10912 (2007)CrossRefGoogle Scholar
  56. K. Motoo, N. Toda et al., Generation of concentration gradient from a wave-like pattern by high frequency vibration of liquid–liquid interface. Biomed. Microdevices 10(3), 329–335 (2008)CrossRefGoogle Scholar
  57. R.D. Nelson, P.G. Quie et al., Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J. Immunol. 115(6), 1650–1656 (1975)Google Scholar
  58. M. O’Hayre, C.L. Salanga et al., Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem. J. 409(3), 635–649 (2008)CrossRefGoogle Scholar
  59. J.Y. Park, C.M. Hwang et al., Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient. Lab. Chip 7(12), 1673–1680 (2007)CrossRefGoogle Scholar
  60. J.Y. Park, S.J. Yoo et al., Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow. Lab. Chip 9(15), 2194–2202 (2009)CrossRefGoogle Scholar
  61. W. Saadi, S.-J. Wang et al., A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed. Microdevices 8(2), 109–118 (2006)CrossRefGoogle Scholar
  62. W. Saadi, S. Rhee et al., Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9(5), 627–635 (2007)CrossRefGoogle Scholar
  63. A. Shamloo, N. Ma et al., Endothelial cell polarization and chemotaxis in a microfluidic device. Lab. Chip 8(8), 1292–1299 (2008)CrossRefGoogle Scholar
  64. W. Siyan, Y. Feng et al., Application of microfluidic gradient chip in the analysis of lung cancer chemotherapy resistance. J. Pharm. Biomed. Anal. 49(3), 806–810 (2009)CrossRefGoogle Scholar
  65. K.S.M. Smalley, M. Lioni et al., Life isn’t flat: taking cancer biology to the next dimension. In Vitro Cell. Dev. Biol. Anim. 42(8), 242–247 (2006)CrossRefGoogle Scholar
  66. R. Sudo, S. Chung et al., Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J. 23(7), 2155–2164 (2009)CrossRefGoogle Scholar
  67. S. Sun, J. Wise et al., Human fibroblast migration in three-dimensional collagen gel in response to noninvasive electrical stimulus. I. Characterization of induced three-dimensional cell movement. Tissue Eng. 10(9–10), 1548–1557 (2004)Google Scholar
  68. K. Sun, Z. Wang et al., Modular microfluidics for gradient generation. Lab. Chip 8(9), 1536–1543 (2008)CrossRefGoogle Scholar
  69. L. Tingjiao, L. Chunyu et al., A microfluidic device for characterizing the invasion of cancer cells in 3-D matrix. Electrophoresis 30(24), 4285–4291 (2009)CrossRefGoogle Scholar
  70. F. Ulloa, E. MartÌ, Wnt won the war: antagonistic role of Wnt over Shh controls dorso-ventral patterning of the vertebrate neural tube. Dev. Dyn. 239(1), 69–76 (2010)Google Scholar
  71. C.T. Veldkamp, C. Seibert et al., Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12. Sci. Signal. 1(37), ra4 (2008)CrossRefGoogle Scholar
  72. R.B. Vernon, E.H. Sage, A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc. Res. 57(2), 118–133 (1999)CrossRefGoogle Scholar
  73. V. Vickerman, J. Blundo et al., Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab. Chip 8(9), 1468–1477 (2008)CrossRefGoogle Scholar
  74. S.A. Vokes, H. Ji et al., Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning. Development 134, 1977–1989 (2007)Google Scholar
  75. S. Wang, J.M. Tarbell, Effect of fluid flow on smooth muscle cells in a 3-dimensional collagen gel model. Arterioscler. Thromb. Vasc. Biol. 20(10), 2220–2225 (2000)Google Scholar
  76. H. Wu, B. Huang et al., Generation of complex, static solution gradients in microfluidic channels. J. Am. Chem. Soc. 128(13), 4194–4195 (2006)CrossRefGoogle Scholar
  77. J. Yang, X. Pi et al., Diffusion characteristics of a T-type microchannel with different configurations and inlet angles. Anal. Sci. 23(6), 697–703 (2007)CrossRefGoogle Scholar
  78. H.A. Yusuf, S.J. Baldock et al., Optimisation and analysis of microreactor designs for microfluidic gradient generation using a purpose built optical detection system for entire chip imaging. Lab. Chip 9(13), 1882–1889 (2009)CrossRefGoogle Scholar
  79. M.H. Zaman, R.D. Kamm et al., Computational model for cell migration in three-dimensional matrices. Biophys. J. 89(2), 1389–1397 (2005)CrossRefGoogle Scholar
  80. M.H. Zaman, L.M. Trapani et al., Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. 103(29), 10889–10894 (2006)CrossRefGoogle Scholar
  81. I. Zervantonakis, S. Chung et al., Concentration gradients in microfluidic 3D matrix cell culture systems. Intern. J. Micro-Nano Scale Transport 1(1), 27–36 (2010)CrossRefGoogle Scholar
  82. S. Zhang, F.V.W. George et al., Designer Self-assembling peptide nanofiber scaffolds for study of 3-D cell biology and beyond. Adv. Cancer Res. 99, 335–362 (2008). Academic PressCrossRefGoogle Scholar
  83. Y. Zhou, Y. Wang et al., Generation of complex concentration profiles by partial diffusive mixing in multi-stream laminar flow. Lab. Chip 9(10), 1439–1448 (2009)CrossRefGoogle Scholar
  84. X. Zhu, L.Y. Chu et al., Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation. Analyst 129(11), 1026–1031 (2004)CrossRefGoogle Scholar
  85. D. Zicha, G.A. Dunn et al., A new direct-viewing chemotaxis chamber. J. Cell Sci. 99(4), 769–775 (1991)Google Scholar
  86. S.H. Zigmond, Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75(2), 606–616 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ovid C. Amadi
    • 1
    • 2
  • Matthew L. Steinhauser
    • 2
  • Yuichi Nishi
    • 3
  • Seok Chung
    • 4
  • Roger D. Kamm
    • 5
    • 6
  • Andrew P. McMahon
    • 3
    • 7
  • Richard T. Lee
    • 2
    • 7
  1. 1.Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Cardiovascular DivisionBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUSA
  4. 4.School of Mechanical EngineeringKorea UniversitySeoulSouth Korea
  5. 5.Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  6. 6.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  7. 7.Harvard Stem Cell InstituteHarvard UniversityCambridgeUSA

Personalised recommendations