Skip to main content
Log in

Rapid multivortex mixing in an alternately formed contraction-expansion array microchannel

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We report a contraction-expansion array (CEA) microchannel for rapidly and homogeneously mixing different types of fluids by multivortex induced in alternately formed rectangular structures of the channel. Rapid mixing can be achieved in a topologically simple and easily fabricated CEA microchannel, employing a synergetic combination of two kinds of vortices: (1) expansion-vortices being induced by flow separation due to an abrupt change of cross-sectional area of the channel in its expansion region, and (2) Dean-vortices being induced by centrifugal forces acting on a cornering fluid through the channel. We experimentally and numerically investigated expansion- and Dean-vortices, and demonstrated rapid mixing of an aqueous solution containing fluorescein or human red blood cells (RBCs) at different flow rates corresponding to Reynolds number (Re) ranging from 7.2 to 43.0. Over 90% mixing efficiency at a channel length of 14.4 and 19.5 mm was achieved at Re ≥ 28.6 (fluorescein solution and deionized water) and Re ≥ 21.5 (RBC suspension and phosphate buffered saline), respectively. The proposed CEA channel is expected to be useful for a wide range of applications where particles, cells and reagents must be rapidly and homogeneously mixed in microchannels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke, Science 282, 484–486 (1998)

    Article  Google Scholar 

  • D. Di Carlo, D. Irimia, R.G. Tompkins, M. Toner, Proc. Natl Acad. Sci. USA 104, 18892–18897 (2007)

    Article  Google Scholar 

  • H. Chen, J. Meiners, Appl. Phys. Lett. 84, 2193–2195 (2004)

    Article  Google Scholar 

  • W.J. Devenport, E.P. Sutton, Exp. Fluids 14, 423–432 (1993)

    Article  Google Scholar 

  • J.P.B. Howell, D.R. Mott, S. Fertig, C.R. Kaplan, J.P. Golden, E.S. Oran, F.S. Ligler, Lab Chip 5, 524–530 (2005)

    Article  Google Scholar 

  • T.J. Johnson, D. Ross, L.E. Locascio, Anal. Chem. 74, 45–51 (2002)

    Article  Google Scholar 

  • K. Kanno, H. Maeda, S. Izumo, M. Ikuno, K. Takeshita, A. Tashiro, M. Fujii, Lab Chip 2, 15–18 (2002)

    Article  Google Scholar 

  • D.S. Kim, S.H. Lee, T.H. Kwon, C.H. Ahn, Lab Chip 5, 739–747 (2005)

    Article  Google Scholar 

  • Y. Lee, C. Shih, P. Tabeling, C. Ho, J. Fluid Mech. 575, 425–448 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • M.G. Lee, S. Choi, J.-K. Park, Appl. Phys. Lett. 95, 051902 (2009a)

    Article  Google Scholar 

  • M.G. Lee, S. Choi, J.-K. Park, Lab Chip 9, 3155–3160 (2009b)

    Article  Google Scholar 

  • R.H. Liu, J. Yang, M.Z. Pindera, M. Athavale, P. Grodzinski, Lab Chip 2, 151–157 (2002)

    Article  Google Scholar 

  • L.-H. Lu, K.S. Ryu, C. Liu, J. Microelectromech. Syst. 11, 462–469 (2002)

    Article  Google Scholar 

  • M. Miyazaki, H. Nakamura, H. Maeda, Chem. Lett. 30, 442–443 (2001)

    Article  Google Scholar 

  • W.Y. Ng, S. Goh, Y.C. Lam, C. Yang, I. Rodriquez, Lab Chip 9, 802–809 (2009)

    Article  Google Scholar 

  • N.T. Nguyen, Z. Wu, J. Micromech. Microeng. 15, R1–R16 (2005)

    Article  Google Scholar 

  • M.H. Oddy, J.G. Santiago, J.C. Mikkelsen, Anal. Chem. 73, 5822–5832 (2001)

    Article  Google Scholar 

  • M.S.N. Oliveira, L.E. Rodd, G.H. McKinley, M.A. Alves, Microfluid. Nanofluid. 5, 809–826 (2008)

    Article  Google Scholar 

  • J.M. Ottino, S. Wiggins, Science 305, 485–486 (2004)

    Article  Google Scholar 

  • A.M. Sallam, N.H. Hwang, Biorheology 21, 783–797 (1984)

    Google Scholar 

  • P. Sethu, L.L. Moldawer, M.N. Mindrinos, P.O. Scumpia, C.L. Tannahill, J. Wilhelmy, P.A. Efron, B.H. Brownstein, R.G. Tompkins, M. Toner, Anal. Chem. 78, 5453–5461 (2006)

    Article  Google Scholar 

  • A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, G.M. Whitesides, Science 295, 647–651 (2002)

    Article  Google Scholar 

  • A.P. Sudarsan, V.M. Ugaz, Lab Chip 6, 74–82 (2006a)

    Article  Google Scholar 

  • A.P. Sudarsan, V.M. Ugaz, Proc. Natl Acad. Sci. USA 103, 7228–7233 (2006b)

    Article  Google Scholar 

  • E.Y. Tafti, R. Kumar, H.J. Cho, Appl. Phys. Lett. 93, 143504 (2008)

    Article  Google Scholar 

  • Y. Yamaguchi, F. Takagi, T. Watari, K. Yamashita, H. Nakamura, H. Shimizu, H. Maeda, Chem. Eng. J. 101, 367–372 (2004a)

    Article  Google Scholar 

  • Y. Yamaguchi, K. Takagi, H. Yamashita, H. Nakamura, H. Maeda, AlChE J. 50, 1530–1535 (2004b)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Laboratory (NRL) Program grant (R0A-2008-000-20109-0) and by the Converging Research Center Program grant (2009-0093663) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je-Kyun Park.

Additional information

Lee and Choi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1969 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M.G., Choi, S. & Park, JK. Rapid multivortex mixing in an alternately formed contraction-expansion array microchannel. Biomed Microdevices 12, 1019–1026 (2010). https://doi.org/10.1007/s10544-010-9456-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9456-8

Keywords

Navigation