Biomedical Microdevices

, Volume 12, Issue 6, pp 1019–1026 | Cite as

Rapid multivortex mixing in an alternately formed contraction-expansion array microchannel

  • Myung Gwon Lee
  • Sungyoung Choi
  • Je-Kyun Park


We report a contraction-expansion array (CEA) microchannel for rapidly and homogeneously mixing different types of fluids by multivortex induced in alternately formed rectangular structures of the channel. Rapid mixing can be achieved in a topologically simple and easily fabricated CEA microchannel, employing a synergetic combination of two kinds of vortices: (1) expansion-vortices being induced by flow separation due to an abrupt change of cross-sectional area of the channel in its expansion region, and (2) Dean-vortices being induced by centrifugal forces acting on a cornering fluid through the channel. We experimentally and numerically investigated expansion- and Dean-vortices, and demonstrated rapid mixing of an aqueous solution containing fluorescein or human red blood cells (RBCs) at different flow rates corresponding to Reynolds number (Re) ranging from 7.2 to 43.0. Over 90% mixing efficiency at a channel length of 14.4 and 19.5 mm was achieved at Re ≥ 28.6 (fluorescein solution and deionized water) and Re ≥ 21.5 (RBC suspension and phosphate buffered saline), respectively. The proposed CEA channel is expected to be useful for a wide range of applications where particles, cells and reagents must be rapidly and homogeneously mixed in microchannels.


Microfluidics Multivortex Contraction-expansion array microchannel Expansion-vortices Dean-vortices Flow separation 



This research was supported by the National Research Laboratory (NRL) Program grant (R0A-2008-000-20109-0) and by the Converging Research Center Program grant (2009-0093663) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST).

Supplementary material

10544_2010_9456_MOESM1_ESM.doc (1.9 mb)
ESM 1 (DOC 1969 kb)


  1. M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke, Science 282, 484–486 (1998)CrossRefGoogle Scholar
  2. D. Di Carlo, D. Irimia, R.G. Tompkins, M. Toner, Proc. Natl Acad. Sci. USA 104, 18892–18897 (2007)CrossRefGoogle Scholar
  3. H. Chen, J. Meiners, Appl. Phys. Lett. 84, 2193–2195 (2004)CrossRefGoogle Scholar
  4. W.J. Devenport, E.P. Sutton, Exp. Fluids 14, 423–432 (1993)CrossRefGoogle Scholar
  5. J.P.B. Howell, D.R. Mott, S. Fertig, C.R. Kaplan, J.P. Golden, E.S. Oran, F.S. Ligler, Lab Chip 5, 524–530 (2005)CrossRefGoogle Scholar
  6. T.J. Johnson, D. Ross, L.E. Locascio, Anal. Chem. 74, 45–51 (2002)CrossRefGoogle Scholar
  7. K. Kanno, H. Maeda, S. Izumo, M. Ikuno, K. Takeshita, A. Tashiro, M. Fujii, Lab Chip 2, 15–18 (2002)CrossRefGoogle Scholar
  8. D.S. Kim, S.H. Lee, T.H. Kwon, C.H. Ahn, Lab Chip 5, 739–747 (2005)CrossRefGoogle Scholar
  9. Y. Lee, C. Shih, P. Tabeling, C. Ho, J. Fluid Mech. 575, 425–448 (2007)MATHCrossRefMathSciNetGoogle Scholar
  10. M.G. Lee, S. Choi, J.-K. Park, Appl. Phys. Lett. 95, 051902 (2009a)CrossRefGoogle Scholar
  11. M.G. Lee, S. Choi, J.-K. Park, Lab Chip 9, 3155–3160 (2009b)CrossRefGoogle Scholar
  12. R.H. Liu, J. Yang, M.Z. Pindera, M. Athavale, P. Grodzinski, Lab Chip 2, 151–157 (2002)CrossRefGoogle Scholar
  13. L.-H. Lu, K.S. Ryu, C. Liu, J. Microelectromech. Syst. 11, 462–469 (2002)CrossRefGoogle Scholar
  14. M. Miyazaki, H. Nakamura, H. Maeda, Chem. Lett. 30, 442–443 (2001)CrossRefGoogle Scholar
  15. W.Y. Ng, S. Goh, Y.C. Lam, C. Yang, I. Rodriquez, Lab Chip 9, 802–809 (2009)CrossRefGoogle Scholar
  16. N.T. Nguyen, Z. Wu, J. Micromech. Microeng. 15, R1–R16 (2005)CrossRefGoogle Scholar
  17. M.H. Oddy, J.G. Santiago, J.C. Mikkelsen, Anal. Chem. 73, 5822–5832 (2001)CrossRefGoogle Scholar
  18. M.S.N. Oliveira, L.E. Rodd, G.H. McKinley, M.A. Alves, Microfluid. Nanofluid. 5, 809–826 (2008)CrossRefGoogle Scholar
  19. J.M. Ottino, S. Wiggins, Science 305, 485–486 (2004)CrossRefGoogle Scholar
  20. A.M. Sallam, N.H. Hwang, Biorheology 21, 783–797 (1984)Google Scholar
  21. P. Sethu, L.L. Moldawer, M.N. Mindrinos, P.O. Scumpia, C.L. Tannahill, J. Wilhelmy, P.A. Efron, B.H. Brownstein, R.G. Tompkins, M. Toner, Anal. Chem. 78, 5453–5461 (2006)CrossRefGoogle Scholar
  22. A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, G.M. Whitesides, Science 295, 647–651 (2002)CrossRefGoogle Scholar
  23. A.P. Sudarsan, V.M. Ugaz, Lab Chip 6, 74–82 (2006a)CrossRefGoogle Scholar
  24. A.P. Sudarsan, V.M. Ugaz, Proc. Natl Acad. Sci. USA 103, 7228–7233 (2006b)CrossRefGoogle Scholar
  25. E.Y. Tafti, R. Kumar, H.J. Cho, Appl. Phys. Lett. 93, 143504 (2008)CrossRefGoogle Scholar
  26. Y. Yamaguchi, F. Takagi, T. Watari, K. Yamashita, H. Nakamura, H. Shimizu, H. Maeda, Chem. Eng. J. 101, 367–372 (2004a)CrossRefGoogle Scholar
  27. Y. Yamaguchi, K. Takagi, H. Yamashita, H. Nakamura, H. Maeda, AlChE J. 50, 1530–1535 (2004b)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Bio and Brain Engineering, College of Life Science and BioengineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations