Biomedical Microdevices

, Volume 12, Issue 5, pp 769–775 | Cite as

Guided corona generates wettability patterns that selectively direct cell attachment inside closed microchannels



We present a method to create plasma mediated linear protein patterns along the lengths of simple one-inlet-one-outlet straight polydimethylsiloxane microchannels by biasing the delivery of corona discharge at the capillary openings. Pattern widths ranging from 500–1,000 μm were generated in 2 mm wide microchannels with lengths of 0.5, 1.0, or 1.5 cm. Corona-treated surfaces enabled the spatial alignment of C2C12 myoblasts to the adhesive protein-coated regions, facilitating myoblast differentiation into myotubes. Although limited in precision, this protein patterning technique offers the advantages of simplicity and low cost, making it attractive for educational and research environments that lack access to extensive microfabrication facilities. The results also provide a cautionary note to those using corona discharge to increase wettability of microchannels; the surface modification may not be uniform, even within single microchannels being treated depending on settings and positioning of the corona device tips.


Corona discharge Micropattern Mouse myoblasts Microchannel Polydimethylsiloxane 



This work was supported by the NSF (CMMI 0700232) and NIH (CA136829-02). Angela Dixon would like to thankfully recognize the support of the Ford Fellowship Foundation and University of Michigan Cellular Biotechnology Training Program (CBTP).

We wish to gratefully acknowledge the contributions of Amir Sarvestani, who is a research scholar of the University of Michigan Undergraduate Research Opportunity Program (UROP). We also thank Arlyne Simon for her preparation of the Alexa 546 fibrinogen reagents and review of the manuscript. We thank Toshiki Matsuoka for his review of the custom myotube immunostaining procedure for accuracy. In addition, we are appreciative of the insightful discourse held with Dr. Mark J. Kushner.

The MF 20 monoclonal antibody developed by Donald A. Fischman, M.D was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA 52242. We also thank the BASF Corporation for kindly providing the Pluronic® F127 surfactant.

Supplementary material

10544_2010_9431_MOESM1_ESM.pdf (210 kb)
Esm 1 (PDF 210 kb)


  1. A. Bogaerts, E. Neyts, R. Gijbels, J. van der Mullen, Spectrochim Acta Part B 57, 609 (2002)CrossRefGoogle Scholar
  2. A. Bransky, N. Korin, S. Levenberg, Biomed Microdevices 10, 421 (2008)CrossRefGoogle Scholar
  3. J-H. Choee, S.J. Lee, Y.M. Lee, J.M. Rhee, H.B. Lee, G. Khang, J Appl Polym Sci 92, 599 (2004)CrossRefGoogle Scholar
  4. K. Haubert, T. Drier, D. Beebe, Lab Chip 6, 1548 (2006)CrossRefGoogle Scholar
  5. S.M. Hong, S.H. Kim, J.H. Kim, H.I. Hwang, J. Phys.: Conf. Ser. (2006) doi: 10.1088/1742-6596/34/1/108
  6. A. Khademhosseini, G. Eng, J. Yeh, P. Kucharczyk, R. Langer, G. Vunjak-Novakovic, M. Radisic, Biomed Microdevices 9, 149 (2007)CrossRefGoogle Scholar
  7. J. Kim, M.K. Chaudhury. Conf Elect Insul Dielectr Phenom (1999) doi:  10.1109/CEIDP.1999.807902
  8. J.H. Lee, G. Khang, J.W. Lee, H.B. Lee, J Colloid Interf Sci 205, 323 (1998)CrossRefGoogle Scholar
  9. S.J. Lee, G. Khang, Y.M. Lee, H.B. Lee, J Colloid Interf Sci 259, 228 (2003)CrossRefGoogle Scholar
  10. J. Lim, D.R. Reyes, A. Manz, Lab Chip 3, 137 (2003)CrossRefGoogle Scholar
  11. V.A. Liu, W.E. Jastromb, S.N. Bhatia, J Biomed Mater Res 60, 126 (2002)CrossRefGoogle Scholar
  12. N. Lucas, R. Franke, A. Hinze, C.-P. Klages, R. Frank, S. Büttgenbach, Plasma Process Polym 6, S370 (2009)CrossRefGoogle Scholar
  13. E. Martínez, A. Lagunas, C.A. Mills, S. Rodríguez-Seguí, M. Estévez, S. Oberhansl, J. Comelles, J. Samitier, Nanomedicine 4, 65 (2009)CrossRefGoogle Scholar
  14. J.A. Neff, K.D. Caldwell, P.A. Tresco, J Biomed Mater Res 40, 511 (1998)CrossRefGoogle Scholar
  15. C.M. Nelson, S. Raghavan, J.L. Tan, C.S. Chen, Langmuir 19, 1493 (2003)CrossRefGoogle Scholar
  16. D.R. Reyes, M.M. Ghanem, G.M. Whitesides, A. Manz, Lab Chip 2, 113 (2002)CrossRefGoogle Scholar
  17. S.W. Rhee, A.M. Taylor, C.H. Tu, D.H. Cribbs, C.W. Cotman, N.L. Jeon, Lab Chip 5, 102 (2005)CrossRefGoogle Scholar
  18. S.W. Rhee, A.M. Taylor, D.H. Cribbs, C.W. Cotman, N.L. Jeon, Biomed Microdevices 9, 15 (2007)CrossRefGoogle Scholar
  19. J.W. Song, W. Gu, N. Futai, K.A. Warner, J.E. Nor, S. Takayama, Anal Chem 77, 3993 (2005)CrossRefGoogle Scholar
  20. S. Takayama, J.C. McDonald, E. Ostuni, M.N. Liang, P.J.A. Kenis, R.F. Ismagilov, G.M. Whitesides, P Natl Acad Sci USA 96, 5545 (1999)CrossRefGoogle Scholar
  21. J.L. Tan, W. Liu, C.M. Nelson, S. Raghavan, C.S. Chen, Tissue Eng 10, 865 (2004)CrossRefGoogle Scholar
  22. S. Thorslund, F. Nikolajeff, J Micromech Microeng 17, N16 (2007)CrossRefGoogle Scholar
  23. A. Tourovskaia, T. Barber, B.T. Wickes, D. Hirdes, B. Grin, D.G. Castner, K.E. Healy, A. Folch, Langmuir 19, 4754 (2003)CrossRefGoogle Scholar
  24. A. Tourovskaia, X. Figueroa-Masot, A. Folch, Lab Chip 5, 14 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of Macromolecular Science and EngineeringAnn ArborUSA

Personalised recommendations