Advertisement

Biomedical Microdevices

, Volume 12, Issue 4, pp 637–645 | Cite as

Six-stage cascade paramagnetic mode magnetophoretic separation system for human blood samples

  • Youngdo Jung
  • Yoonsu Choi
  • Ki-Ho Han
  • A. Bruno Frazier
Article

Abstract

This paper is focused on the development of a six-stage cascade paramagnetic mode magnetophoretic separation (PMMS) system for separating suspended cells in blood based on their native magnetic properties. The design and fabrication of a PMMS system are presented and the microfluidic separation system is characterized experimentally using human whole blood as the case study. The PMMS system can separate blood cells types continuously using the magnetophoretic force produced from a high magnetic field gradient without magnetic or fluorescent tagging. Experimental results demonstrated that red blood cell separation in the PMMS system at a volumetric flow rate of 28.8 μL / hr, resulting in a separation time of 10.4 min for a 5.0 μL blood sample with a separation efficiency of 89.5 ± 0.20%. The PMMS system was tested at higher volumetric flow rates of 50.4 μL / hr and 72.0 μL / hr. The measured separation efficiencies were 86.2 ± 1.60% and 59.9 ± 6.06% respectively.

Keywords

Human whole blood Cell separator High Gradient Magnetic Field Separation (HGMS) Magnetophoresis Microfluidic system 

Notes

Acknowledgements

This work was supported by the National Institutes of Health (NIH) under Grant Number ES10846.

Authorships

Contributions: Youngdo Jung designed the research, carried out fabrication and experiments, analyzed data, and wrote the paper. Yoonsu Choi carried out fabrication. Ki-Ho Han provided theoretical background for the research. A. Bruno Frazier managed overall research and edited the paper.

Conflict-of-interest disclosure

The authors declare no competing financial interests.

References

  1. J.D. Adams, U. Kim, H.T. Soh, Multitarget magnetic activated cell sorter. Proc. Natl. Acad. Sci. U.S.A. 105, 18165–18170 (2008)CrossRefGoogle Scholar
  2. R.W. Applegate, J. Squier, T. Vestad, J. Oakey, D.W.M. Marr, Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars. Opt. Express 12, 4390–4398 (2004)CrossRefGoogle Scholar
  3. F.F. Becker, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P.R.C. Gascoyne, Separation of human breast-cancer cells from blood by differential dielectric affinity. Proc. Natl. Acad. Sci. U.S.A. 92, 860–864 (1995)CrossRefGoogle Scholar
  4. H.T. Chen, A.D. Ebner, A.J. Rosengart, M.D. Kaminski, J.A. Ritter, Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent: 1. Parametric study with single wire correlation. J. Magn. Magn. Mater. 284, 181–194 (2004)CrossRefGoogle Scholar
  5. X. Chen, D.F. Cui, C.C. Liu, H. Li, Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens. Actuators, B, Chem. 130, 216–221 (2008)CrossRefGoogle Scholar
  6. I.F. Cheng, H.C. Chang, D. Hou, H.C. Chang, An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics 1, 15 (2007)CrossRefGoogle Scholar
  7. S. Choi, J.K. Park, Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab Chip 7, 890–897 (2007)CrossRefGoogle Scholar
  8. D.A. Colling, Intrinsic magnetization of Fe-Ni-Mn alloys. J. Appl. Physi. 40, 1379–1381 (1969)CrossRefGoogle Scholar
  9. K. Dholakia, M.P. MacDonald, P. Zemanek, T. Cizmar, Cellular and colloidal separation using optical forces. Laser Manipulation of Cells and Tissues 82, 467–495 (2007)CrossRefGoogle Scholar
  10. A. Ditsch, J. Yin, P.E. Laibinis, D.I.C. Wang, T.A. Hatton, Ion-exchange purification of proteins using magnetic nanoclusters. Biotechnol. Prog. 22, 1153–1162 (2006)CrossRefGoogle Scholar
  11. A.D. Ebner, J.A. Ritter, L. Nunez, High-gradient magnetic separation for the treatment of high-level radioactive wastes. Sep. Sci. Technol. 34, 1333–1350 (1999)Google Scholar
  12. A.B. Frazier, Metallic microstructures fabricated using photosensitive polyimide electroplating molds. J. Microelectromech. Syst. 2, 87–94 (1993)CrossRefGoogle Scholar
  13. P.R.C. Gascoyne, J. Vykoukal, Particle separation by dielectrophoresis. Electrophoresis 23, 1973–1983 (2002)CrossRefGoogle Scholar
  14. K.H. Han, A.B. Frazier, Continuous magnetophoretic separation of blood cells in microdevice format. J. Appl. Physi. 96, 5797–5802 (2004)CrossRefGoogle Scholar
  15. K.H. Han, A.B. Frazier, Diamagnetic capture mode magnetophoretic microseparator for blood cells. J. Microelectromech. Syst. 14, 1422–1431 (2005a)CrossRefGoogle Scholar
  16. K.H. Han, A.B. Frazier, Reliability aspects of packaging and integration technology for microfluidic systems. IEEE Transactions on Device and Materials Reliability 5, 452–457 (2005b)CrossRefGoogle Scholar
  17. K.H. Han, A.B. Frazier, Paramagnetic capture mode magnetophoretic microseparator for blood cells. IEE Proc. Nanobiotechnol. 153, 67–73 (2006a)CrossRefGoogle Scholar
  18. K.H. Han, A.B. Frazier, Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip 6, 265–273 (2006b)CrossRefGoogle Scholar
  19. K.H. Han, A.B. Frazier, Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium. Lab Chip 8, 1079–1086 (2008)CrossRefGoogle Scholar
  20. L.A. Herzenberg, D. Parks, B. Sahaf, O. Perez, M. Roederer, L.A. Herzenberg, The history and future of the fluorescence activated cell sorter and flow cytometry: A view from Stanford. Clin. Chem. 48, 1819–1827 (2002)Google Scholar
  21. Y. Kakihara, T. Fukunishi, S. Takeda, S. Nishijima, A. Nakahira, Superconducting high gradient magnetic separation for purification of wastewater from paper factory. IEEE Trans. Appl. Supercond. 14, 1565–1567 (2004)CrossRefGoogle Scholar
  22. M.P. MacDonald, G.C. Spalding, K. Dholakia, Microfluidic sorting in an optical lattice. Nature 426, 421–424 (2003)CrossRefGoogle Scholar
  23. M.P. MacDonald, S. Neale, L. Paterson, A. Richies, K. Dholakia, G.C. Spalding, Cell cytometry with a light touch: Sorting microscopic matter with an optical lattice. J. Biol. Regul. Homeost. Agents 18, 200–205 (2004)Google Scholar
  24. H. Maenaka, M. Yamada, M. Yasuda, M. Seki, Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Langmuir 24, 4405–4410 (2008)CrossRefGoogle Scholar
  25. D. Melville, F. Paul, S. Roath, High gradient magnetic separation of red-cells from whole-blood. IEEE Trans. Magn. 11, 1701–1704 (1975)CrossRefGoogle Scholar
  26. S. Miltenyi, W. Muller, W. Weichel, A. Radbruch, High-gradient magnetic cell-separation with MACS. Cytometry 11, 231–238 (1990)CrossRefGoogle Scholar
  27. G.D. Moeser, K.A. Roach, W.H. Green, P.E. Laibinis, T.A. Hatton, Water-based magnetic fluids as extractants for synthetic organic compounds. Ind. Eng. Chem. Res. 41, 4739–4749 (2002)CrossRefGoogle Scholar
  28. A.F. Ngomsik, A. Bee, M. Draye, G. Cote, V. Cabuil, Magnetic nano- and microparticles for metal removal and environmental applications: a review. Comptes Rendus Chimie 8, 963–970 (2005)CrossRefGoogle Scholar
  29. M. Ozkan, M. Wang, C. Ozkan, R. Flynn, A. Birkbeck, S. Esener, Optical manipulation of objects and biological cells in microfluidic devices. Biomed. Microdevices 5, 61–67 (2003)CrossRefGoogle Scholar
  30. N. Pamme, C. Wilhelm, Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6, 974–980 (2006)CrossRefGoogle Scholar
  31. N. Pamme, J.C.T. Eijkel, A. Manz, On-chip free-flow magnetophoresis: Separation and detection of mixtures of magnetic particles in continuous flow. J. Magn. Magn. Mater. 307, 237–244 (2006)CrossRefGoogle Scholar
  32. M.S. Pommer, Y.T. Zhang, N. Keerthi, D. Chen, J.A. Thomson, C.D. Meinhart, H.T. Soh, Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis 29, 1213–1218 (2008)CrossRefGoogle Scholar
  33. A.J. Richards, O.S. Roath, R.J.S. Smith, J.H.P. Watson, The mechanisms of high gradient magnetic separation of human blood and bone marrow. IEEE Trans. Magn. 32, 459–470 (1996)CrossRefGoogle Scholar
  34. J.A. Ritter, A.D. Ebner, K.D. Daniel, K.L. Stewart, Application of high gradient magnetic separation principles to magnetic drug targeting. J. Magn. Magn. Mater. 280, 184–201 (2004)CrossRefGoogle Scholar
  35. M. Sarikaya, T. Abbasov, M. Erdemoglu, Some aspects of magnetic filtration theory for removal of fine particles from aqueous suspensions. J. Dispers. Sci. Technol. 27, 193–198 (2006)CrossRefGoogle Scholar
  36. T. Schneider, L.R. Moore, Y. Jing, S. Haam, P.S. Williams, A.J. Fleischman, S. Roy, J.J. Chalmers, M. Zborowski, Continuous flow magnetic cell fractionation based on antigen expression level. J. Biochem. Biophys. Methods 68, 1–21 (2006)CrossRefGoogle Scholar
  37. Y.Y. Sun, X.C. Yuan, L.S. Ong, J. Bu, S.W. Zhu, R. Liu, Large-scale optical traps on a chip for optical sorting. Appl. Phys. Lett. 90, (2007)Google Scholar
  38. M. Takayasu, D.R. Kelland, J.V. Minervini, Continuous magnetic separation of blood components from whole blood. IEEE Trans. Appl. Supercond. 10, 927–930 (2000)CrossRefGoogle Scholar
  39. A. Thiel, A. Scheffold, A. Radbruch, Immunomagnetic cell sorting—pushing the limits. Immunotechnology 4, 89–96 (1998)CrossRefGoogle Scholar
  40. T.E. Thomas, S.J.R. Abraham, A.J. Otter, E.W. Blackmore, P.M. Lansdorp, High-gradient magnetic separation of cells on the basis of expression levels of cell-surface antigens. J. Immunol. Methods 154, 245–252 (1992)CrossRefGoogle Scholar
  41. M. Toner, D. Irimia, Blood-on-a-chip. Annu. Rev. Biomed. Eng. 7, 77–103 (2005)CrossRefGoogle Scholar
  42. S. Vankrunkelsven, D. Clicq, K. Pappaert, W. Ranson, C. De Tandt, H. Ottevaere, H. Thienpont, G.V. Baron, G. Desmet, A novel microstep device for the size separation of cells. Electrophoresis 25, 1714–1722 (2004)CrossRefGoogle Scholar
  43. M.M. Wang, E. Tu, D.E. Raymond, J.M. Yang, H.C. Zhang, N. Hagen, B. Dees, E.M. Mercer, A.H. Forster, I. Kariv, P.J. Marchand, W.F. Butler, Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 23, 83–87 (2005)CrossRefGoogle Scholar
  44. N. Xia, T.P. Hunt, B.T. Mayers, E. Alsberg, G.M. Whitesides, R.M. Westervelt, D.E. Ingber, Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed. Microdevices 8, 299–308 (2006)CrossRefGoogle Scholar
  45. M. Yamada, M. Seki, Microfluidic particle sorter employing flow splitting and recombining. Anal. Chem. 78, 1357–1362 (2006)CrossRefGoogle Scholar
  46. B.B. Yellen, Z.G. Forbes, D.S. Halverson, G. Fridman, K.A. Barbee, M. Chorny, R. Levy, G. Friedman, Targeted drug delivery to magnetic implants for therapeutic applications. J. Magn. Magn. Mater. 293, 647–654 (2005)CrossRefGoogle Scholar
  47. M. Zborowski, G.R. Ostera, L.R. Moore, S. Milliron, J.J. Chalmers, A.N. Schechter, Red blood cell magnetophoresis. Biophys. J. 84, 2638–2645 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Youngdo Jung
    • 1
  • Yoonsu Choi
    • 1
  • Ki-Ho Han
    • 2
  • A. Bruno Frazier
    • 1
  1. 1.School of Electrical and Computer Engineering, Georgia Institute of TechnologyAtlantaUSA
  2. 2.School of Nano EngineeringInje UniversityGimhaeRepublic of Korea

Personalised recommendations