Biomedical Microdevices

, Volume 12, Issue 3, pp 523–532 | Cite as

Controlled microscale diffusion gradients in quiescent extracellular fluid

  • Darren Cherng-Wen Tan
  • Lin-Yue Lanry Yung
  • Partha Roy


Microchannels offer a means of establishing concentration gradients of soluble factors over micron length scales representative of those in tissues. Here, we report the development of a microfluidic channel system wherein a hydrogel has been patterned to generate temporally and spatially stable concentration gradients of multiple solutes in quiescent extracellular fluid. The fluorophore Alexa Fluor 488 and a fluorescent glucose analog are used as probes to illustrate the generation of stable, reproducible, and linear probe concentration gradients. A method is described for estimating the diffusivity and hydrogel permeability of a solute from in situ imaging data. Concentration gradients are also generated in the presence of a mouse insulinoma cell line to demonstrate the compatibility of the system with living cells. The net transport and metabolism rate of the glucose analog is found to be heterogeneous and independent of the applied extracellular gradient. This system may be suitable for the study of cell response to various extracellular gradients of soluble factors.


Microfluidics Gradient generator Poly(ethylene glycol) diacrylate Hydrogel Pancreatic beta cell 



This study was funded by NUS FRC research grant R397000020112. The authors would like to thank Ganesh Balasubramanian and Sashi Ranjan for their suggestions and kind assistance with the fabrication of master molds.


  1. H. Chen, Z. He, A. Bagri, M. Tessier-Lavigne, Neuron 21(6), 1283–1290 (1998)CrossRefGoogle Scholar
  2. S.Y. Cheng, S. Heilman, M. Wasserman, S. Archer, M.L. Shuler, M. Wu, Lab Chip 7(6), 763–769 (2007)CrossRefGoogle Scholar
  3. D.T. Chiu, N.L. Jeon, S. Huang, R.S. Kane, C.J. Wargo, I.S. Choi, D.E. Ingber, G.M. Whitesides, Proc. Natl. Acad. Sci. U. S. A. 97(6), 2408–2413 (2000)CrossRefGoogle Scholar
  4. S. Chung, R. Sudo, P.J. Mack, C.R. Wan, V. Vickerman, R.D. Kamm, Lab Chip 9(2), 269–275 (2009)CrossRefGoogle Scholar
  5. M. Ebara, J.M. Hoffman, P.S. Stayton, A.S. Hoffman, Radiat. Phys. Chem. 76, 1409–1413 (2007)CrossRefGoogle Scholar
  6. R.L. Fournier, Basic transport phenomena in biomedical engineering (Taylor & Francis, New York, 2007)Google Scholar
  7. E.F. Foxman, J.J. Campbell, E.C. Butcher, J. Cell Biol. 139(5), 1349–1360 (1997)CrossRefGoogle Scholar
  8. E.F. Foxman, E.J. Kunkel, E.C. Butcher, J. Cell Biol. 147(3), 577–588 (1999)CrossRefGoogle Scholar
  9. B. Heit, S. Tavener, E. Raharjo, P. Kubes, J. Cell Biol. 159(1), 91–102 (2002)CrossRefGoogle Scholar
  10. T.M. Keenan, A. Folch, Lab Chip 8(1), 34–57 (2008)CrossRefGoogle Scholar
  11. N.Y. Lee, Y.K. Jung, H.G. Park, Biochem. Eng. J. 29, 103–108 (2006)CrossRefGoogle Scholar
  12. F. Leira, M.C. Louzao, J.M. Vieites, L.M. Botana, M.R. Vieytes, Toxicol. In Vitro 16(3), 267–273 (2002)CrossRefGoogle Scholar
  13. C.W. Li, R. Chen, M. Yang, Lab Chip 7(10), 1371–1373 (2007)CrossRefGoogle Scholar
  14. B. Mosadegh, C. Huang, J.W. Park, H.S. Shin, B.G. Chung, S.K. Hwang, K.H. Lee, H.J. Kim, J. Brody, N.L. Jeon, Langmuir 23(22), 10910–10912 (2007)CrossRefGoogle Scholar
  15. K.T. Nguyen, J.L. West, Biomaterials 23(22), 4307–4314 (2002)CrossRefGoogle Scholar
  16. S. Paliwal, P.A. Iglesias, K. Campbell, Z. Hilioti, A. Groisman, A. Levchenko, Nature 446(7131), 46–51 (2007)CrossRefGoogle Scholar
  17. M. V. Pishko, Proceedings of 2005 IEEE. Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, September 1–4 1(1), 1058–1064 (2005)Google Scholar
  18. V. Vickerman, J. Blundo, S. Chung, R. Kamm, Lab Chip 8(9), 1468–1477 (2008)CrossRefGoogle Scholar
  19. H. Wu, B. Huang, R.N. Zare, J. Am. Chem. Soc. 128(13), 4194–4195 (2006)CrossRefGoogle Scholar
  20. K. Yamada, M. Nakata, N. Horimoto, M. Saito, H. Matsuoka, N. Inagaki, J. Biol. Chem. 275(29), 22278–22283 (2000)CrossRefGoogle Scholar
  21. C. Zou, Y. Wang, Z. Shen, J. Biochem. Biophys. Methods 64(3), 207–215 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Darren Cherng-Wen Tan
    • 1
  • Lin-Yue Lanry Yung
    • 2
  • Partha Roy
    • 1
  1. 1.Division of BioengineeringNational University of SingaporeSingaporeSingapore
  2. 2.Department of Chemical & Biomolecular EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations