Advertisement

Biomedical Microdevices

, Volume 12, Issue 2, pp 223–233 | Cite as

Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging

  • Karthik Kumar
  • Rony Avritscher
  • Youmin Wang
  • Nancy Lane
  • David C. Madoff
  • Tse-Kuan Yu
  • Jonathan W. Uhr
  • Xiaojing Zhang
Article

Abstract

A handheld, forward-imaging, laser-scanning confocal microscope (LSCM) demonstrating optical sectioning comparable with microtome slice thicknesses in conventional histology, targeted towards interventional imaging, is reported. Fast raster scanning (~2.5 kHz line scan rate, 3.0–5.0 frames per second) was provided by a 2-axis microelectromechanical system (MEMS) scanning mirror fabricated by a method compatible with complementary metal-oxide-semiconductor (CMOS) processing. Cost-effective rapid-prototyped packaging combined the MEMS mirror with micro-optical components into a probe with 18 mm outer diameter and 54 mm rigid length. ZEMAX optical design simulations indicate the ability of the handheld optical system to obtain lateral resolution of 0.31 and axial resolution of 2.85 µm. Lateral and axial resolutions are experimentally measured at 0.5 µm and 4.2 µm respectively, with field of view of 200 × 125 µm. Results of reflectance imaging of ex vivo swine liver, and fluorescence imaging of the expression of cytokeratin and mammaglobin tumor biomarkers in epithelial human breast tissue from metastatic breast cancer patients are presented. The results indicate that inexpensive, portable handheld optical microscopy tools based on silicon micromirror technologies could be important in interventional imaging, complementing existing coarse-resolution techniques to improve the efficacy of disease diagnosis, image-guided excisional microsurgery, and monitored photodynamic therapy.

Keywords

Handheld instrumentation Laser scanning confocal microscope (LSCM) CMOS-compatible scanning micromirror Microelectromechanical systems (MEMS) Interventional imaging 

Notes

Acknowledgments

Financial support of this research by Wallace H Coulter Foundation Early Career Award is gratefully acknowledged. The scanning micromirrors were fabricated at Stanford Nanofabrication Facility and the Microelectronics Research Center at the University of Texas at Austin, both supported by the National Science Foundation National Nanofabrication Infrastructure Network under grants 9731293 and 0335765, respectively. The University of Texas M. D. Anderson Cancer Center and University of Texas Southwestern Tissue Repository at UTSW provided the swine liver and human specimens used for this research respectively. Control images for the fluorescence microscopy experiments were obtained using equipment at the Core facilities within the Institute for Cellular and Molecular Biology at the University of Texas at Austin.

References

  1. A.D. Aguirre, P.R. Hertz, Y. Chen, J.G. Fujimoto, W. Piyawattanametha, L. Fan, M.C. Wu, "Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and En face imaging. Opt Express 15, 2445–2453 (2007)CrossRefGoogle Scholar
  2. Y.-C. Cheng, C.-L. Dai, C.-Y. Lee, P.-H. Chen, P.-Z. Chang, A MEMS micromirror fabricated using CMOS post-process. Sensors and Actuators A: Physical 120, 573–581 (2005)CrossRefGoogle Scholar
  3. D. Ching-Liang, X. Fu-Yuan, J. Ying-Zong, C. Chin-Fon, An approach to fabricating microstructures that incorporate circuits using a post-CMOS process. Journal of Micromechanics and Microengineering 15, 98 (2005)CrossRefGoogle Scholar
  4. C.-L. Dai, F.-Y. Xiao, Y.-Z. Juang, C.-F. Chiu, An approach to fabricating microstructures that incorporate circuits using a post-CMOS process. Journal of Micromechanics and Microengineering 15, 98–103 (2005)CrossRefGoogle Scholar
  5. H. Dooyoung, P.R. Patterson, H.D. Nguyen, H. Toshiyoshi, M.C. Wu, Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors. IEEE Journal of Selected Topics in Quantum Electronics 10, 505–513 (2004)CrossRefGoogle Scholar
  6. G.K. Fedder, R.T. Howe, L. Tsu-Jae King, E.P. Quevy, Technologies for cofabricating MEMS and electronics. Proceedings of the IEEE 96, 306–322 (2008)CrossRefGoogle Scholar
  7. L. Fu, A. Jain, H. Xie, C. Cranfield, M. Gu, Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror. Opt Express 14, 1027–1032 (2006)CrossRefGoogle Scholar
  8. X. Gan, S.P. Schilders, M. Gu, Image enhancement through turbid media under a microscope by use of polarization gating methods. Journal of the Optical Society of America A 16, 2177–2184 (1999)CrossRefGoogle Scholar
  9. C.L. Hoy, N.J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, A. Ben-Yakar, Miniaturized probe for femtosecond laser microsurgery and two-photon imaging. Opt Express 16, 9996–10005 (2008)CrossRefGoogle Scholar
  10. C. Hyuck, D. Garmire, J. Demmel, R.S. Muller, Simple fabrication process for self-aligned, high-performance microscanners—Demonstrated use to generate a 2-D ablation pattern. Journal of Microelectromechanical Systems 16, 260–268 (2007)CrossRefGoogle Scholar
  11. S. Kimura, T. Wilson, Confocal scanning optical microscope using single-mode fiber for signal detection. Applied Optics 30, 2143–2150 (1991)CrossRefGoogle Scholar
  12. U. Krishnamoorthy, L. Daesung, O. Solgaard, Self-aligned vertical electrostatic combdrives for micromirror actuation. Journal of Microelectromechanical Systems 12, 458–464 (2003)CrossRefGoogle Scholar
  13. K. Kumar, J.C. Condit, A. McElroy, N.J. Kemp, K. Hoshino, T.E. Milner, X. Zhang, Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror. Journal of Optics A: Pure and Applied Optics 10, 044013 (2008a)CrossRefGoogle Scholar
  14. K. Kumar, K. Hoshino, X. Zhang, Handheld subcellular-resolution single-fiber confocal microscope using high-reflectivity two-axis vertical combdrive silicon microscanner. Biomedical Microdevices 10, 653–660 (2008b)CrossRefGoogle Scholar
  15. K. Kumar, X. Zhang, CMOS-compatible 2-axis self-aligned vertical comb-driven micromirror for large field-of-view microendoscopes, Proceedings of the 22nd IEEE International Conference on MicroElectroMechanical Systems (MEMS 2009), pp. 1015, 2009aGoogle Scholar
  16. K. Kumar, Rony Avritscher, D.C. Madoff, X.J. Zhang, Handheld Single-Cell-Layer Optical Sectioning Reflectance Confocal Microscope for Interventional Imaging, The 29th Conference on Lasers and Electro Optics(CLEO), Baltimore, Maryland, 1–5 Jun, 2009bGoogle Scholar
  17. K.C. Maitland, H.J. Shin, H. Ra, D. Lee, O. Solgaard, R. Richards-Kortum, Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging. Opt Express 14, 8604–8612 (2006)CrossRefGoogle Scholar
  18. A.B. Parthasarathy, W.J. Tom, A. Gopal, X.J. Zhang, A.K. Dunn, Robust flow measurement with multi-exposure speckle imaging. Optics Express 16, 1975–1989 (2008)CrossRefGoogle Scholar
  19. W. Piyawattanametha, R.P.J. Barretto, T.H. Ko, B.A. Flusberg, E.D. Cocker, H. Ra, D. Lee, O. Solgaard, M.J. Schnitzer, Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two- dimensional scanning mirror. Opt Lett. 31, 2018–2020 (2006)CrossRefGoogle Scholar
  20. H. Ra, W. Piyawattanametha, M.J. Mandella, P.-L. Hsiung, J. Hardy, T.D. Wang, C.H. Contag, G.S. Kino, O. Solgaard, Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope. Opt Express 16, 7224–7232 (2008)CrossRefGoogle Scholar
  21. M. Rajadhyaksha, R.R. Anderson, R.H. Webb, Video-rate confocal scanning laser microscope for imaging human tissues in vivo. Appl Opt 38, 2105–2115 (1999)CrossRefGoogle Scholar
  22. J.M. Schmitt, A.H. Gandjbakhche, R.F. Bonner, Use of polarized light to discriminate short-path photons in a multiply scattering medium. Applied Optics 31, 6535–6546 (1992)CrossRefGoogle Scholar
  23. O. Solgaard, Photonic microsystems: Micro and nanotechnology applied to optical devices and systems, 1st edn. (Springer, New York, 2008)Google Scholar
  24. J. Woonggyu, Z. Jun, W. Lei, P. Wilder-Smith, C. Zhongping, D.T. McCormick, N.C. Tien, Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror. IEEE Journal of Selected Topics in Quantum Electronics 11, 806–810 (2005)CrossRefGoogle Scholar
  25. Z. Yaqoob, J. Wu, E.J. McDowell, X. Heng, C. Yang, Methods and application areas of endoscopic optical coherence tomography. Journal of Biomedical Optics 11, 063001–19 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Karthik Kumar
    • 1
  • Rony Avritscher
    • 2
  • Youmin Wang
    • 1
  • Nancy Lane
    • 3
  • David C. Madoff
    • 2
  • Tse-Kuan Yu
    • 4
  • Jonathan W. Uhr
    • 3
  • Xiaojing Zhang
    • 5
  1. 1.Department of Electrical and Computer EngineeringUniversity of Texas at AustinAustinUSA
  2. 2.Section of Interventional RadiologyUniversity of Texas M. D. Anderson Cancer CenterHoustonUSA
  3. 3.Cancer Immunobiology CenterUniversity of Texas Southwestern Medical Center at DallasDallasUSA
  4. 4.Radiation Treatment CenterUniversity of Texas M. D. Anderson Cancer CenterHoustonUSA
  5. 5.Department of Biomedical EngineeringUniversity of Texas at AustinAustinUSA

Personalised recommendations