Biomedical Microdevices

, Volume 12, Issue 2, pp 187–195 | Cite as

Inertial microfluidics for sheath-less high-throughput flow cytometry

  • Ali Asgar S. Bhagat
  • Sathyakumar S. Kuntaegowdanahalli
  • Necati Kaval
  • Carl J. Seliskar
  • Ian Papautsky


Flow cytometer is a powerful single cell analysis tool that allows multi-parametric study of suspended cells. Most commercial flow cytometers available today are bulky, expensive instruments requiring high maintenance costs and specially trained personnel for operation. Hence, there is a need to develop a low cost, portable alternative that will aid in making this powerful research tool more accessible. In this paper we describe a sheath-less, on-chip flow cytometry system based on the principle of Dean coupled inertial microfluidics. The design takes advantage of the Dean drag and inertial lift forces acting on particles flowing through a spiral microchannel to focus them in 3-D at a single position across the microchannel cross-section. Unlike the previously reported micro-flow cytometers, the developed system relies entirely on the microchannel geometry for particle focusing, eliminating the need for complex microchannel designs and additional microfluidic plumbing associated with sheath-based techniques. In this work, a 10-loop spiral microchannel 100 µm wide and 50 µm high was used to focus 6 µm particles in 3-D. The focused particle stream was detected with a laser induced fluorescence (LIF) setup. The microfluidic system was shown to have a high throughput of 2,100 particles/sec. Finally, the viability of the developed technique for cell counting was demonstrated using SH-SY5Y neuroblastoma cells. The passive focusing principle and the planar nature of the described design will permit easy integration with existing lab-on-a-chip (LOC) systems.


Microfluidics Flow cytometry Cell counting 



This work was supported by the University of Cincinnati Institute for Nanoscale Science and Technology and the National Institute of Occupational Safety and Health (NIOSH) Health Pilot Research Project Training Program of the University of Cincinnati Education and Research Center (T42/OH008432-04). The authors are also grateful to Dr. Girish Kumar for providing cells for the experiments.


  1. E.S. Asmolov, J. Fluid Mech. 381, 63 (1999)MATHCrossRefGoogle Scholar
  2. A.A.S. Bhagat, S.S. Kuntaegowdanahalli, I. Papautsky, Lab Chip 8, 1906 (2008a)CrossRefGoogle Scholar
  3. A.A.S. Bhagat, S.S. Kuntaegowdanahalli, I. Papautsky, Phys. Fluids 20, 101702 (2008b)CrossRefGoogle Scholar
  4. A.A.S. Bhagat, S.S. Kuntaegowdanahalli, I. Papautsky, Microfluid. Nanofluid. 7, 217 (2009)CrossRefGoogle Scholar
  5. A.A.S. Bhagat, E.T.K. Peterson, I. Papautsky, J. Micromech. Microeng. 17, 1017 (2007)CrossRefGoogle Scholar
  6. G. Boeck, Int. Rev. Cytol. 204, 239 (2001)CrossRefGoogle Scholar
  7. X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R.G. Tompkins, W. Rodriguez, M. Toner, Lab Chip 7, 170 (2007)CrossRefGoogle Scholar
  8. Z. Darzynkiewicz, E. Bedner, P. Smolewski, Semin. Hematol. 38, 179 (2001)CrossRefGoogle Scholar
  9. W.R. Dean, Phil. Mag. Ser. 5, 673 (1928)Google Scholar
  10. A. Deptala, S.P. Mayer, Methods Cell Biol. 64, 385 (2001)CrossRefGoogle Scholar
  11. D. Di Carlo, D. Irimia, R.G. Tompkins, M. Toner, Proc. Natl. Acad. Sci. USA 104, 18892 (2007)CrossRefGoogle Scholar
  12. D. Di Carlo, J.F. Edd, D. Irimia, R.G. Tompkins, M. Toner, Anal. Chem. 80, 2204 (2008)CrossRefGoogle Scholar
  13. S. Eyal, S.R. Quake, Electrophoresis 23, 2653 (2002)CrossRefGoogle Scholar
  14. D. Fenili, B. Pirovano, Clin. Chem. Lab. Med. 36, 909 (1998)CrossRefGoogle Scholar
  15. A.Y. Fu, C. Spence, A. Scherer, F.H. Arnold, S.R. Quake, Nature Biotech. 17, 1109 (1999)CrossRefGoogle Scholar
  16. S. Gawad, L. Schild, P. Renaud, Lab Chip 1, 76 (2001)CrossRefGoogle Scholar
  17. T.S. Gunasekera, P.V. Attfield, D.A. Veal, Appl. Environ. Microbiol. 66, 1228 (2000)CrossRefGoogle Scholar
  18. C.L. Harding, D.R. Lloyd, C.M. McFarlane, M. Al-Rubeai, Biotechnol. Prog. 16, 800 (2000)CrossRefGoogle Scholar
  19. D. Huh, W. Gu, Y. Kamotani, J.B. Grotberg, S. Takayama, Physiol. Meas. 26, 73 (2005)CrossRefGoogle Scholar
  20. S.S. Kuntaegowdanahalli, A.A.S. Bhagat, G. Kumar, I. Papautsky, Lab Chip 9, 2973 (2009)CrossRefGoogle Scholar
  21. C. Lancaster, A. Kokoris, M. Nabavi, J. Clemmens, P. Maloney, J. Capadanno, J. Gerdes, C.F. Battrell, Methods 37, 120 (2005)CrossRefGoogle Scholar
  22. C.H. Lin, G.B. Lee, L.M. Fu, B.H. Hwey, J. Microelectromech. Syst. 13, 923 (2004)CrossRefGoogle Scholar
  23. X. Mao, S.C.S. Lin, C. Dong, T.J. Huang, Lab Chip 9, 1583 (2009)CrossRefGoogle Scholar
  24. M.R. Melamed, T. Lindmo, M.L. Mendelsohn, Flow cytometry and sorting (Wiley-Liss, New York, 2000)Google Scholar
  25. S. Ookawara, R. Higashi, D. Street, K. Ogawa, Chem. Eng. J. 101, 171 (2004)CrossRefGoogle Scholar
  26. G. Segre, A. Silberberg, Nature 189, 209 (1961)CrossRefGoogle Scholar
  27. G. Segre, A. Silberberg, J. Fluid. Mech. 14, 136 (1962)CrossRefGoogle Scholar
  28. C. Simonnet, A. Groisman, Anal. Chem. 78, 5653 (2006)CrossRefGoogle Scholar
  29. D.S. Stein, J.A. Korvick, S.H. Vermund, J. Infect. Dis. 165, 352 (1992)Google Scholar
  30. N. Sundararajan, M.S. Pio, L.P. Lee, A.A. Berlin, J. Microelectromech. Syst. 13, 559 (2004)CrossRefGoogle Scholar
  31. Y.C. Tung, M. Zhang, C.T. Lin, K. Kurabayashi, S.J. Skerlos, Sens. Actuators B 98, 356 (2004)CrossRefGoogle Scholar
  32. Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I.R. Perch-Nielsen, K.B. Mogensen, D. Snakenborg, J.P. Kutter, A. Wolff, Lab Chip 4, 372 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ali Asgar S. Bhagat
    • 1
  • Sathyakumar S. Kuntaegowdanahalli
    • 1
  • Necati Kaval
    • 2
  • Carl J. Seliskar
    • 2
  • Ian Papautsky
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of ChemistryUniversity of CincinnatiCincinnatiUSA

Personalised recommendations