Advertisement

Biomedical Microdevices

, 11:981 | Cite as

High-throughput microfluidic system for monitoring diffusion-based monolayer yeast cell culture over long time periods

  • Chunxiong Luo
  • Lingli Jiang
  • Shibo Liang
  • Qi Ouyang
  • Hang Ji
  • Yong Chen
Article

Abstract

We present a simple and high-throughput microfluidic system for diffusion-based monolayer yeast cell culture monitoring. Yeast cells are patterned into the micro-cavity array with a suitable height (4 μm) that keeps the cells fixed in monolayer during the cell division. Different sizes of cavities and different repeating times of injection were tested in order to realize as many single-cell/cavity as possible. Single-cell/cavity has been achieved in about 40% of 100 parallel cavities. As a demonstration, we apply this technology to investigate budding yeast and fission yeast cultures and show that it permits single-cell resolution over many cellular generations. Our results show that the technique provides an easy way to study the phenotype of single yeast cell cycle or cell-cell communication in high-throughput microfluidic system.

Keywords

Diffusion-based High-throughput Yeast cell Monolayer 

Notes

Acknowledgments

The authors would like to thank Y.G. Wang, X.J. Yang for helpful suggestions. This work is partially supported by the Chinese Natural Science Foundation (NO. 10704002, 10634010, 10721403) and National 973 Project (NO. 2003CB715900).

References

  1. D.D. Carlo, N. Aghdam, L.P. Lee, Anal. Chem. 78, 4925–4930 (2006). doi: 10.1021/ac060541s CrossRefGoogle Scholar
  2. G. Charvin, F.R. Cross, E.D. Siggia, Plos one. 1, e1468 (2008)CrossRefGoogle Scholar
  3. S. Cookson, N. Ostroff, W.L. Pang, D. Volfson, J. Hasty. Mol. Syst. Biol. 1, 00024 (2005). doi: 10.1038/msb4100032 Google Scholar
  4. J. Fink, M. Thery, A. Azioune, R. Dupont, F. Chatelain, M. Bornens, M. Piel, Lab. Chip. 7, 672–680 (2007). doi: 10.1039/b618545b CrossRefGoogle Scholar
  5. V.T. George, G. Brooks, T.C. Humphrey, Mol. Biol. Cell. 18, 4618–4629 (2007)CrossRefGoogle Scholar
  6. A. Groisman, C. Lobo, H. Cho, J.K. Campbel, Y.S. Dufour, A.M. Stevens, A. Levchenko, Nature methods. 2, 685–689 (2005)CrossRefGoogle Scholar
  7. P.J. Hung, P.J. Lee, P. Sabounchi, R. Lin, L.P. Lee, Biotechnol. Bioeng. 89, 1–8 (2005). doi: 10.1002/bit.20289 CrossRefGoogle Scholar
  8. K.R. King, S.H. Wang, D. Irimia, A. Jayaraman, M. Toner, M.L. Yarmush, Lab. Chip. 7, 77–85 (2007). doi: 10.1039/b612516f CrossRefGoogle Scholar
  9. P.J. Lee, N.C. Helman, W.A. Lim, P.J. Hung, Biotechniques. 44(1), 91–95 (2008). doi: 10.2144/000112673 CrossRefGoogle Scholar
  10. K. Liu, R. Pitchimani, D. Dang, K. Bayer, T. Harrington, D. Pappas, Langmuir. 24, 5955–5960 (2008)CrossRefGoogle Scholar
  11. C.X. Luo, H. Li, C.Y. Xiong, X.L. Peng, Q.L. Kou, Y. Chen, H. Ji, Q. Ouyang, Biomed. Microdevices. 9, 573–578 (2007). doi: 10.1007/s10544-007-9066-2 CrossRefGoogle Scholar
  12. C.X. Luo, X.J. Zhu, T. Yu, X.J. Luo, Q. Ouyang, H. Ji, Y. Chen, Biotechnol. Bioeng. 101, 190–195 (2008). doi: 10.1002/bit.21877 CrossRefGoogle Scholar
  13. J.A. Schramke, S.F. Murphy, W.J. Doucette, W.D. Hintze, Chemosphere. 38, 2381–2406 (1999)CrossRefGoogle Scholar
  14. S.D. Talia, J.M. Skotheim, J.M. Bean, E.D. Siggia, F.R. Cross, Nature. 448, 947–951 (2007). doi: 10.1038/nature06072 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Center for the Theoretical Biology, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
  2. 2.Center for Microfluidic and Nanotechnology, The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of PhysicsPeking UniversityBeijingChina
  3. 3.Ecole Normale SuperieureParisFrance

Personalised recommendations