Advertisement

Biomedical Microdevices

, Volume 11, Issue 3, pp 557–564 | Cite as

Deformability study of breast cancer cells using microfluidics

  • H. W. Hou
  • Q. S. Li
  • G. Y. H. Lee
  • A. P. Kumar
  • C. N. Ong
  • C. T. Lim
Article

Abstract

Cell deformability is an important biomarker which can be used to distinguish between healthy and diseased cells. In this study, microfluidics is used to probe the biorheological behaviour of breast cancer cells in an attempt to develop a method to distinguish between non-malignant and malignant cells. A microfabricated fluidic channel design consisting of a straight channel and two reservoirs was used to study the biorheological behaviour of benign breast epithelial cells (MCF-10A) and non-metastatic tumor breast cells (MCF-7). Quantitative parameters such as entry time (time taken for the cell to squeeze into the microchannel) and transit velocity (speed of the cell flowing through the microchannel) were defined and measured from these studies. Our results demonstrated that a simple microfluidic device can be used to distinguish the difference in stiffness between benign and cancerous breast cells. This work lays the foundation for the development of potential microfluidic devices which can subsequently be used in the detection of cancer cells.

Keywords

Microfluidics Breast tumor cells Metastasis Biorheology Cell deformability Cell mechanics 

Notes

Acknowledgements

The support provided by the Singapore–MIT Alliance and the Global Enterprise for Micro Mechanics and Molecular Medicine (GEM4) is gratefully acknowledged.

Supplementary material

10544_2008_9262_MOESM1_ESM.mpg (3 mb)
ESM 1 Entry of a single MCF-10A cell into a 10 by 10 μm microchannel (movie) (Movie 2.98 MB)
10544_2008_9262_MOESM2_ESM.mpg (718 kb)
ESM 2 Entry of a single MCF-7 cell into a 10 by 10 μm microchannel (movie) (Movie 718 KB)

References

  1. M. Antia, T. Herricks, P.K. Rathod, Microfluidic modeling of cell;cell interactions in malaria pathogenesis PLoS Pathog. 3(7), e99 (2007). doi: 10.1371/journal.ppat.0030099 CrossRefGoogle Scholar
  2. P. Gassmann, J. Haier, The tumor cell–host organ interface in the early onset of metastatic organ colonisation Clin. Exp. Metastasis 25(2), 171–181 (2008). doi: 10.1007/s10585-007-9130-6 CrossRefGoogle Scholar
  3. J. Guck et al., Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence Biophys. J. 88(5), 3689–3698 (2005). doi: 10.1529/biophysj.104.045476 CrossRefGoogle Scholar
  4. G.Y.H. Lee, C.T. Lim, Biomechanics approaches to studying human diseases Trends Biotechnol. 25(3), 111–118 (2007). doi: 10.1016/j.tibtech.2007.01.005 CrossRefMathSciNetGoogle Scholar
  5. W.G. Lee et al., On-chip erythrocyte deformability test under optical pressure Lab Chip7(4), 516–519 (2007). doi: 10.1039/b614912j CrossRefGoogle Scholar
  6. Q.S. Li et al., AFM indentation study of breast cancer cells Biochem. Biophys. Res. Commun. 374(4), 609–613 (2008a). doi: 10.1016/j.bbrc.2008.07.078 CrossRefGoogle Scholar
  7. Q.S. Li, et al., Micropipette aspiration study of tumor breast cells. 2008b (in preparation)Google Scholar
  8. B. Lincoln et al., Deformability-based flow cytometry Cytometry A. 59A(2), 203–209 (2004). doi: 10.1002/cyto.a.20050 CrossRefGoogle Scholar
  9. B. Lincoln et al., Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications Biomed. Microdevices. 9(5), 703–710 (2007). doi: 10.1007/s10544-007-9079-x CrossRefGoogle Scholar
  10. B.A. Smith et al., Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist Biophys. J. 88(4), 2994–3007 (2005). doi: 10.1529/biophysj.104.046649 CrossRefGoogle Scholar
  11. S. Suresh, Biomechanics and biophysics of cancer cells Acta Biomater. 3(4), 413–438 (2007). doi: 10.1016/j.actbio.2007.04.002 CrossRefGoogle Scholar
  12. A. Vaziri, M.R.K. Mofrad, Mechanics and deformation of the nucleus in micropipette aspiration experiment J. Biomech. 40(9), 2053–2062 (2007). doi: 10.1016/j.jbiomech.2006.09.023 CrossRefGoogle Scholar
  13. K. Yamauchi et al., Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration Cancer Res. 65(10), 4246–4252 (2005). doi: 10.1158/0008-5472.CAN-05-0069 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • H. W. Hou
    • 1
  • Q. S. Li
    • 2
  • G. Y. H. Lee
    • 3
  • A. P. Kumar
    • 4
  • C. N. Ong
    • 5
    • 6
  • C. T. Lim
    • 1
    • 2
    • 3
    • 6
  1. 1.NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.Singapore–MIT AllianceSingaporeSingapore
  4. 4.National University Medical InstituteNational University of SingaporeSingaporeSingapore
  5. 5.Department of Community, Occupational and Family MedicineNational University of SingaporeSingaporeSingapore
  6. 6.Life Sciences InstituteNational University of SingaporeSingaporeSingapore

Personalised recommendations