Advertisement

Biomedical Microdevices

, 11:429 | Cite as

Attachment and response of human fibroblast and breast cancer cells to three dimensional silicon microstructures of different geometries

  • Mehdi Nikkhah
  • Jeannine S. Strobl
  • Masoud Agah
Article

Abstract

The paper reports the development of three dimensional (3-D) silicon microstructures and the utilization of these microenvironments for discriminating between normal fibroblast (HS68) and breast cancer cells (MDA-MB-231). These devices consist of arrays of microchambers connected with channels and were fabricated using a single-mask, single-isotropic-etch process. The behavior and response of normal fibroblast and breast cancer cells, two key cell types in human breast tumor microenvironments, were explored in terms of adhesion and growth in these artificial 3-D microenvironments having curved sidewalls. Breast cancer cells formed stable adhesions with the curved sidewalls however fibroblasts stretched and elongated their cytoskeleton and actin filaments inside the microchambers. Statistical analysis revealed that fibroblast cells grew on both flat silicon surfaces and inside the microchambers regardless of microchamber depth. However, the localization of breast cancer cells in these same substrates was dependent on the microchamber depth. After 72 h in culture, the ratio of the number of breast cancer cells on flat surfaces compared to breast cancer cells inside the microchambers was significantly decreased within the deeper microchambers; for microchambers having depths 88 μm less than 5% of the breast cancer cells grew on the flat surfaces. This behavior was sustained for 120 h, the longest time point examined. The results suggest that certain 3-D silicon microstructures have potential application as a tool to detect breast cancer cells and also as a platform for separating normal fibroblasts from breast cancer cells for cancer diagnosis applications.

Keywords

MEMS Single mask Isotropic microchambers Cellular behavior Breast cancer 

Notes

Acknowledgments

The authors would like to thank Micron Semiconductor Fabrication Facilities and Nanoscale Characterization and Fabrication Laboratory (NCFL) at Virginia Tech and Dr. Kristi DeCourcy at Fralin Biotechnology Center.

References

  1. A. Benzeev, Biochim. Biophys. Acta 780, 197 (1984)Google Scholar
  2. C.J. Bettinger, B. Orrick, A. Misra, R. Langer, J.T. Borenstein, Biomaterials 27, 2558 (2006). doi: 10.1016/j.biomaterials.2005.11.029 CrossRefGoogle Scholar
  3. N.A. Bhowmick, E.G. Neilson, H.L. Moses, Nature 432, 332 (2004). doi: 10.1038/nature03096 CrossRefGoogle Scholar
  4. J.L. Charest, A.J. Garcia, W.P. King, Biomaterials 28, 2202 (2007). doi: 10.1016/j.biomaterials.2007.01.020 CrossRefGoogle Scholar
  5. P. Clark, P. Connolly, A.S.G. Curtis, J.A.T. Dow, C.D.W. Wilkinson, J. Cell Sci. 99, 73 (1991)Google Scholar
  6. M.J. Dalby, M.O. Riehle, S.J. Yarwood, C.D.W. Wilkinson, A.S.G. Curtis, Exp. Cell Res. 284, 274 (2003). doi: 10.1016/S0014-4827(02)00053-8 CrossRefGoogle Scholar
  7. E.T. denBraber, J.E. deRuijter, H.T.J. Smits, L.A. Ginsel, A.F. vonRecum, J.A. Jansen, Biomaterials 17, 1093 (1996). doi: 10.1016/0142-9612(96)85910-2 CrossRefGoogle Scholar
  8. D.E. Discher, P. Janmey, Y.L. Wang, Science 310, 1139 (2005). doi: 10.1126/science.1116995 CrossRefGoogle Scholar
  9. M.R. Dusseiller, D. Schlaepfer, M. Koch, R. Kroschewski, M. Textor, Biomaterials 26, 5917 (2005). doi: 10.1016/j.biomaterials.2005.02.032 CrossRefGoogle Scholar
  10. K. Gantz, L. Renaghan, and M. Agah, J. Micromechanics Microengineering 18 (2008).Google Scholar
  11. H. Haga, S. Sasaki, K. Kawabata, E. Ito, T. Ushiki, T. Sambongi, Ultramicroscopy 82, 253 (2000). doi: 10.1016/S0304-3991(99)00157-6 CrossRefGoogle Scholar
  12. D.E. Ingber, J. Cell Sci. 104, 613 (1993)Google Scholar
  13. R. Kalluri, M. Zeisberg, Nat. Rev. Cancer 6, 392 (2006). doi: 10.1038/nrc1877 CrossRefGoogle Scholar
  14. H.H. Liao, A.S. Andersson, D. Sutherland, S. Petronis, B. Kasemo, P. Thomsen, Biomaterials 24, 649 (2003). doi: 10.1016/S0142-9612(02)00379-4 CrossRefGoogle Scholar
  15. J.Y. Mai, C. Sun, S. Li, X. Zhang, Biomed. Microdevices 9, 523 (2007). doi: 10.1007/s10544-007-9060-8 CrossRefGoogle Scholar
  16. K. Matsuzaka, F. Walboomers, A. de Ruijter, J.A. Jansen, Clin. Oral Implants Res. 11, 325 (2000). doi: 10.1034/j.1600-0501.2000.011004325.x CrossRefGoogle Scholar
  17. C. Oakley, D.M. Brunette, J. Cell Sci. 106, 343 (1993)Google Scholar
  18. C. Oakley, N.A.F. Jaeger, D.M. Brunette, Exp. Cell Res. 234, 413 (1997). doi: 10.1006/excr.1997.3625 CrossRefGoogle Scholar
  19. T.H. Park, M.L. Shuler, Biotechnol. Prog. 19, 243 (2003). doi: 10.1021/bp020143k CrossRefGoogle Scholar
  20. A.M. Rajnicek, S. Britland, C.D. McCaig, J. Cell Sci. 110, 2905 (1997)Google Scholar
  21. K.M.K. Rao, H.J. Cohen, Mutat. Res. 256, 139 (1991)Google Scholar
  22. Y.A. Rovensky, A.D. Bershadsky, E.I. Givargizov, L.N. Obolenskaya, J.M. Vasiliev, Exp. Cell Res. 197, 107 (1991). doi: 10.1016/0014-4827(91)90486-E CrossRefGoogle Scholar
  23. T.P. Stossel, J. Cell Biol. 99, S15 (1984)CrossRefGoogle Scholar
  24. J.S. Strobl, M. Nikkhah, M. Agah, American Association for Cancer Research Special Conference on Advances in Breast Cancer Research: Genetics, Biology, and Clinical Applications, San Diego, CA, 2007Google Scholar
  25. D. Tarin, C.B. Croft, J. Anat. 105, 189 (1969)Google Scholar
  26. Y. Tseng, D. Wirtz, Biophys. J. 81, 1643 (2001)CrossRefGoogle Scholar
  27. A.M.P. Turner, N. Dowell, S.W.P. Turner, L. Kam, M. Isaacson, J.N. Turner, H.G. Craighead, W. Shain, J. Biomed. Mater. Res. 51, 430 (2000). doi: 10.1002/1097-4636(20000905)51:3<430::AID-JBM18>3.0.CO;2-C CrossRefGoogle Scholar
  28. T.G. van Kooten, A.F. von Recum, Tissue Eng. 5, 223 (1999). doi: 10.1089/ten.1999.5.223 CrossRefGoogle Scholar
  29. X.F. Walboomers, H.J.E. Croes, L.A. Ginsel, J.A. Jansen, Biomaterials 19, 1861 (1998). doi: 10.1016/S0142-9612(98)00093-3 CrossRefGoogle Scholar
  30. X.F. Walboomers, H.J.E. Croes, L.A. Ginsel, J.A. Jansen, J. Biomed. Mater. Res. 47, 204 (1999a). doi: 10.1002/(SICI)1097-4636(199911)47:2<204::AID-JBM10>3.0.CO;2-H CrossRefGoogle Scholar
  31. X.F. Walboomers, W. Monaghan, A.S.G. Curtis, J.A. Jansen, J. Biomed. Mater. Res. 46, 212 (1999b). doi: 10.1002/(SICI)1097-4636(199908)46:2<212::AID-JBM10>3.0.CO;2-Y CrossRefGoogle Scholar
  32. G.M. Walker, H.C. Zeringue, D.J. Beebe, Lab Chip 4, 91 (2004). doi: 10.1039/b311214d CrossRefGoogle Scholar
  33. R.A. Weinberg, The Biology of Cancer (Garland Science, Taylor & Francis Group, New York, 2007)Google Scholar
  34. B. Wojciakstothard, A.S.G. Curtis, W. Monaghan, M. McGrath, I. Sommer, C.D.W. Wilkinson, Cell Motil. Cytoskelet. 31, 147 (1995). doi: 10.1002/cm.970310207 CrossRefGoogle Scholar
  35. C. Yao, Y. Lin, M.S. Chua, C.S. Ye, J. Bi, W. Li, Y.F. Zhu, S.M. Wang, Int. J. Cancer 121, 1949 (2007). doi: 10.1002/ijc.22930 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mehdi Nikkhah
    • 1
    • 3
  • Jeannine S. Strobl
    • 2
  • Masoud Agah
    • 3
  1. 1.Department of Mechanical EngineeringVirginia TechBlacksburgUSA
  2. 2.Biomedical ScienceEdward Via Virginia College of Osteopathic MedicineBlacksburgUSA
  3. 3.Virginia Tech MEMS Laboratory, The Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgUSA

Personalised recommendations