Advertisement

Biomedical Microdevices

, 11:421 | Cite as

Elastic and viscoelastic characterization of microcapsules for drug delivery using a force-feedback MEMS microgripper

  • Keekyoung Kim
  • Xinyu Liu
  • Yong Zhang
  • Ji Cheng
  • Xiao Yu Wu
  • Yu Sun
Article

Abstract

This paper reports a monolithic, force-feedback MEMS (microelectomechanical systems) microgripper and its application to micro-scale compression testing of swollen hydrogel microcapsules at wet state during manipulation. The single-chip microgripper integrates an electrothermal microactuator and two capacitive force sensors, one for contact detection (force resolution: 38.5 nN) and the other for gripping force measurements (force resolution: 19.9 nN). With the capability of resolving gripping forces down to 19.9 nN and material deformations with a 20.5 nm resolution, the system quantified Young’s modulus values and viscoelastic parameters of alginate microcapsules (15–25 μm), demonstrating an easy-to-operate, accurate compression testing technique for characterizing soft, micrometer-sized biomaterials.

Keywords

MEMS microgripper Micro-scale compression testing Hydrogel microcapsule Young’s modulus Viscoelastic parameters 

Notes

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada and by the Ontario Ministry of Research and Innovation.

References

  1. A. Fontes, H.P. Fernandes, A.A. de Thomaz, L.C. Barbosa, M.L. Barjas-Castro, C.L. Cesar, J. Biomed. Opt. 13, 014001 (2008)CrossRefGoogle Scholar
  2. R.M. Hochmuth, J. Biomech. 33, 15 (2000)CrossRefGoogle Scholar
  3. I. Dulinska, M. Targosz, W. Strojny, M. Lekka, P. Czuba, W. Balwierz, M. Szymonski, J. Biochem. Biophys. Methods 66, 1 (2006)CrossRefGoogle Scholar
  4. A.R. Bausch, W. Moller, E. Sackmann, Biophys. J. 76, 573 (1999)CrossRefGoogle Scholar
  5. J. Blewett, K. Burrows, C. Thomas, Biotechnol. Lett. 22, 1877 (2000)CrossRefGoogle Scholar
  6. V.V. Lulevich, O.I. Vinogradova, Langmuir 20, 2874 (2004)CrossRefGoogle Scholar
  7. G. Lin, R.E. Palmer, K.S.J. Pister, K.P. Roos, IEEE Trans. Biomed. Eng. 48, 996 (2001)CrossRefGoogle Scholar
  8. S. Yang, T. Saif, Rev. Sci. Instrum. 76, 044301 (2005)CrossRefGoogle Scholar
  9. Y. Sun, S.N. Fry, D.P. Potasek, D.J. Bell, B.J. Nelson, J. Microelectromech. Syst. 14, 4 (2005)CrossRefGoogle Scholar
  10. Y. Sun, K.T. Wan, K.P. Roberts, J.C. Bischof, B.J. Nelson, IEEE T. Nanobiosci. 2, 279 (2003)CrossRefGoogle Scholar
  11. F. Beyeler, A. Neild, S. Oberti, D.J. Bell, Y. Sun, J. Dual, B.J. Nelson, J. Microelectromech. Syst. 16, 7 (2007)CrossRefGoogle Scholar
  12. C. Yamahata, D. Collard, T. Takekawa, M. Kumemura, G. Hashiguchi, H. Fujita, Biophys. J. 94, 63 (2008)CrossRefGoogle Scholar
  13. Q. Liu, A.M. Rauth, X.Y. Wu, Int. J. Pharm. 339, 148 (2007)CrossRefGoogle Scholar
  14. K. Kim, X.Y. Liu, Y. Zhang, Y. Sun, J. Micromech. Microeng 18, 055013 (2008)CrossRefGoogle Scholar
  15. X.Y. Liu, J.H. Tong, Y. Sun, Smart Mater. Struct. 16, 1742 (2007)CrossRefGoogle Scholar
  16. K.K. Liu, J. Phys. D: Appl. Phys. 39, R189 (2006)CrossRefGoogle Scholar
  17. Y. Tatara, J. Soc. Mech. Eng. Ser. A 36, 190 (1993)Google Scholar
  18. R. S. Lakes, Viscoelastic Solids (CRC, Boca Raton, 1998)Google Scholar
  19. M. Sato, D.P. Theret, L.T. Wheelerand, N. Ohshima, R.M. Nerem, J. Biomech. Eng. 112, 263 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Keekyoung Kim
    • 1
  • Xinyu Liu
    • 1
  • Yong Zhang
    • 1
  • Ji Cheng
    • 2
  • Xiao Yu Wu
    • 2
  • Yu Sun
    • 1
  1. 1.Advanced Micro and Nanosystems LaboratoryUniversity of TorontoTorontoCanada
  2. 2.Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoCanada

Personalised recommendations