Biomedical Microdevices

, Volume 11, Issue 2, pp 359–367 | Cite as

A micro circulating PCR chip using a suction-type membrane for fluidic transport

  • Liang-Ju Chien
  • Jung-Hao Wang
  • Tsung-Min Hsieh
  • Ping-Hei Chen
  • Pei-Jer Chen
  • Da-Sheng Lee
  • Ching-Hsing Luo
  • Gwo-Bin Lee


A new micromachined circulating polymerase chain reaction (PCR) chip is reported in this study. A novel liquid transportation mechanism utilizing a suction-type membrane and three microvalves were used to create a new microfluidic control module to rapidly transport the DNA samples and PCR reagents around three bio-reactors operating at three different temperatures. When operating at a membrane actuation frequency of 14.29 Hz and a pressure of 5 psi, the sample flow rate in the microfluidic control module can be as high as 18 μL/s. In addition, an array-type microheater was adopted to improve the temperature uniformity in the reaction chambers. Open-type reaction chambers were designed to facilitate temperature calibration. Experimental data from infrared images showed that the percentage of area inside the reaction chamber with a thermal variation of less than 1°C was over 90% for a denaturing temperature of 94°C. Three array-type heaters and temperature sensors were integrated into this new circulating PCR chip to modulate three specific operating temperatures for the denaturing, annealing, and extension steps of a PCR process. With this approach, the cycle numbers and reaction times of the three separate reaction steps can be individually adjusted. To verify the performance of this circulating PCR chip, a PCR process to amplify a detection gene (150 base pairs) associated with the hepatitis C virus was performed. Experimental results showed that DNA samples with concentrations ranging from 105 to 102copies/μL can be successfully amplified. Therefore, this new circulating PCR chip may provide a useful platform for genetic identification and molecular diagnosis.


PCR Molecular diagnosis Microfluidics Microheaters MEMS 





Gold Bio-MEMS Bio-micro-electro-mechanical-systems


Base pair


Hepatitis C virus


Deoxyribonucleic acid


Electromagnetic valve




Polymerase chain reaction






Scanning electron microscope







The authors gratefully acknowledge the financial supports provided by the National Science Council of Taiwan NSC 96-2622-E-002-001 and NSC 96-2120-M-006-008 for this study.


  1. R.C. Anderson, X. Su, G.J. Bogdan, J. Fenton, Nucleic Acids Res. 28(12) (2000). doi: 10.1093/nar/28.12.e60
  2. P. Belgrader, C.J. Elkin, S.B. Brown, S.N. Nasarabadi, R.G. Langlois, F.P. Milanovich et al., Anal. Chem. 75(14), 3446–3450 (2003). doi: 10.1021/ac034062u CrossRefGoogle Scholar
  3. Z. Chen, S. Qian, W.R. Abrams, D. Malamud, H.H. Bau, Anal. Chem. 76(13), 3707–3715 (2004). doi: 10.1021/ac049914k CrossRefGoogle Scholar
  4. J.H. Chien, D.S. Lee, Y.T. Cheng, S.H. Yeh, W.P. Chou, P.H. Chen, Opt. Commun. 266, 744–750 (2006). doi: 10.1016/j.optcom.2006.05.043 CrossRefGoogle Scholar
  5. T. Fukuba, T. Naganuma, T. Fuiji, Proceedings of the 2002 International Symposium, 101–105 (2004)Google Scholar
  6. A. Gulliksen, L. Solli, F. Karlsen, H. Rogne, E. Hovig, T. Nordstrøm, R. Sirevåg, Anal. Chem. 76, 9–14 (2004). doi: 10.1021/ac034779h CrossRefGoogle Scholar
  7. M. Hashimoto, P.C. Chen, M.W. Mitchell, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy, Lab Chip 4(6), 638–345 (2004). doi: 10.1039/b406860b CrossRefGoogle Scholar
  8. T.M. Hsieh, C.H. Luo, F.C. Huang, J.H. Wang, L.J. Chien, G.B. Lee, Sensors Actuators B. 130, 848–856 (2008)Google Scholar
  9. F.C. Huang, C.S. Liao, G.B. Lee, Electrophoresis 27(16), 3297–3305 (2006). doi: 10.1002/elps.200600458 CrossRefGoogle Scholar
  10. C.W. Huang, S.B. Huang, G.B. Lee, J. Micromech. Microeng. 16, 2265–2272 (2006). doi: 10.1088/0960-1317/16/11/003 CrossRefGoogle Scholar
  11. M. Koch, N. Harris, A. Evans, N. White, A. Brunnschweiler, Sens. Actuators A. 70, 98–103 (1998). doi: 10.1016/S0924-4247(98)00120-4 CrossRefGoogle Scholar
  12. M.U. Kopp, A.J. de Mello, A. Manz, Science 280(5366), 1046–1048 (1998). doi: 10.1126/science.280.5366.1046 CrossRefGoogle Scholar
  13. M. Krishnan, V.M. Ugaz, M.A. Burn, Science 298(5594), 793 (2002). doi: 10.1126/science.298.5594.793 CrossRefGoogle Scholar
  14. D.J. Laser, J.G. Santiago, J. Micromech. Microeng. 14, R35–R64 (2004)CrossRefGoogle Scholar
  15. C.S. Liao, G.B. Lee, J.J. Wu, C.C. Chang, T.M. Hsieh, C.H. Luo, Biosens. Bioelectron. 20, 1341–1348 (2004). doi: 10.1016/j.bios.2004.05.006 CrossRefGoogle Scholar
  16. A. Manz, D.J. Harrison, E.M.J. Verpoorte, J.C. Fettinger, A. Paulus, H. Lüdi, H.M. Widmer, J. Chromatography. 593(1–2), 253–258 (1992)CrossRefGoogle Scholar
  17. K.B. Mullis, Sci Am. 262(4), 56–65 (1990)CrossRefGoogle Scholar
  18. K.B. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, H. Erlich, Cold Spring Harbor Symp. Quant. Biol. 51, 263–273 (1986)Google Scholar
  19. H. Nakano, K. Matsuda, M. Yohda, T. Nagamune, I. Endo, T. Yamane, Biosci. Biotechnol. Biochem. 58(2), 349–352 (1994)CrossRefGoogle Scholar
  20. M.A. Northrup, M.T. Ching, R.M. White, R.T. Wltson, Transducer, Chicago, USA, 924–926 (1993)Google Scholar
  21. M.A. Northrup, C. Gonzalez, D. Hadley, R.F. Hills, P. Landre, S. Lehew, R. Saiki, J.J. Shinsky, R. Watson, R. Watson Jr., Proceeding Transducers, 764–767 (1995)Google Scholar
  22. S. Poser, T. Schulz, U. Dillner, V. Baier, J.M. Kőhler, D. Schimkat, Sens. Actuators A. 62, 672–675 (1997)CrossRefGoogle Scholar
  23. R.K. Saiki, S. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Erlich, N. Arnheim, Science. 230(4732), 1350–1354 (1985)CrossRefGoogle Scholar
  24. K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, H. Misawa, Sens. Actuators B. 84, 283–289 (2002)CrossRefGoogle Scholar
  25. M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, R.Q. Stephen, Science 288(5463), 113–116 (2000). doi: 10.1126/science.288.5463.113 CrossRefGoogle Scholar
  26. C.H. Wang, Y.Y. Chen, C.S. Liao, T.M. Hsieh, C.H. Luo, J.J. Wu, H.H. Lee, G.B. Lee, J. Micromech. Microeng. 17(2), 367–375 (2007)CrossRefGoogle Scholar
  27. A.T. Woolley, D. Hadley, P. Landre, A.J. de Mello, R.A. Mathies, M.A. Northrup, Anal. Chem. 68(23), 4081–4086 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Liang-Ju Chien
    • 1
  • Jung-Hao Wang
    • 1
  • Tsung-Min Hsieh
    • 2
  • Ping-Hei Chen
    • 4
  • Pei-Jer Chen
    • 5
  • Da-Sheng Lee
    • 6
  • Ching-Hsing Luo
    • 2
  • Gwo-Bin Lee
    • 1
    • 3
  1. 1.Department of Engineering ScienceNational Cheng Kung UniversityTainanTaiwan
  2. 2.Department of Electrical EngineeringNational Cheng Kung UniversityTainanTaiwan
  3. 3.Medical Electronics and Device Technology CenterIndustrial Technology Research InstituteHsinchuTaiwan
  4. 4.Department of Mechanical EngineeringNational Taiwan UniversityTaipeiTaiwan
  5. 5.National Taiwan University HospitalNational Taiwan UniversityTaipeiTaiwan
  6. 6.Department of Energy and Refrigerating Air-Conditioning EngineeringNational Taipei University of TechnologyTaipeiTaiwan

Personalised recommendations