Advertisement

Biomedical Microdevices

, 11:95 | Cite as

Micro-electroporation of mesenchymal stem cells with alternating electrical current pulses

  • Roee Ziv
  • Yair Steinhardt
  • Gadi Pelled
  • Dan Gazit
  • Boris Rubinsky
Article

Abstract

Micro-electroporation is an electroporation technology in which the electrical field that induces cell membrane poration is focused onto a single cell contained in a micro-electromechanical structure. Micro-electroporation has many unique attributes including that it facilitates real time control over the process of electroporation at the single cell level. Flow-through micro-electroporation expands on this principle and was developed to facilitate electroporation of a large numbers of cells with control over the electroporation of every single cell. However, our studies show that when electroporation employs conventional direct current (DC) electrical pulses the micro-electroporation system fails, because of electrolysis induced gas bubble formation. We report in this study that when certain alternating currents (AC) electrical pulses are used for micro-electroporation it becomes possible to avoid electrolytic gas bubble formation in a micro-electroporation flow-through system. The effect of AC micro-electroporation on electrolysis was found to depend on the AC frequency used. This concept was tested with mesenchymal stem cells and preliminary results show successful electroporation using this system.

Keywords

Micro-electroporation Mesenchymal stem cells Micro-channel Cell membrane Transmembrane potential Electrolysis 

Notes

Acknowledgments

Partial financial support was provided by the Hebrew University/Johnson&Johnson Fund for Innovative Science.

References

  1. H. Aslan, Y. Zilberman, L. Kandel, M. Liebergall, R.J. Oskouian, D. Gazit, Z. Gazit, Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells Stem Cells 24(7), 1728–1737 (2006)CrossRefGoogle Scholar
  2. E. Burgermeister, A. Schnoebelen, A. Flament, J. Benz, M. Stihle, B. Gsell, A. Rufer, A. Ruf, B. Kuhn, H.P. Märki, J. Mizrahi, E. Sebokova, E. Niesor, M. Meyer, A novel partial agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma) recruits PPARgamma-coactivator-1alpha, prevents triglyceride accumulation, and potentiates insulin signaling in vitro Mol. Endocrinol 20(4), 809–830 (2006)CrossRefGoogle Scholar
  3. A.I. Caplan, S.P. Bruder, Mesenchymal stem cells: building blocks for molecular medicine in the 21st century Trends Mol. Med. 7, 259–264 (2001)CrossRefGoogle Scholar
  4. G.W. Fuller, Report on the Investigations into the Purification of the Ohio River Water at Louisville Kentucky (D. Van Nostrand Company, New York, 1898)Google Scholar
  5. Y. Gafni, G. Turgeman, M. Liebergal, G. Pelled, Z. Gazit, D. Gazit, Stem cells as vehicles for orthopedic gene therapy Gene Ther 11(4), 417–426 (2004)CrossRefGoogle Scholar
  6. D. Gazit, G. Turgeman, P. Kelley, E. Wang, M. Jalenak, Y. Zilberman, I. Moutsatsos, Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy J. Gene Med 1(2), 121–133 (1999)CrossRefGoogle Scholar
  7. A. Hoffmann, S. Czichos, C. Kaps, D. Bächner, H. Mayer, B.G. Kurkalli, Y. Zilberman, G. Turgeman, G. Pelled, G. Gross, D. Gazit, The T-box transcription factor Brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2 J. Cell Sci 115(4), 769–781 (2002)Google Scholar
  8. A. Hoffmann, G. Pelled, G. Turgeman, P. Eberle, Y. Zilberman, H. Shinar, K. Keinan-Adamsky, A. Winkel, S. Shahab, G. Navon, G. Gross, D. Gazit, Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells J. Clin. Invest 116(4), 940–952 (2006)CrossRefGoogle Scholar
  9. Y. Huang, B. Rubinsky, Micro-electroporation: improving the efficiency and understanding of electrical permeabilization of cells Biomed. Microdev 3, 145–150 (1999)CrossRefGoogle Scholar
  10. Y. Huang, B. Rubinsky, Microfabricated electroporation chip for single cell membrane permeabilization Sens. Actuators A 89, 242–249 (2001)CrossRefGoogle Scholar
  11. Y. Huang, B. Rubinsky, Flow-Through Micro-Electroporation Chip for Genetic Engineering of Individual Cells. Hilton Head, South Carolina: s.n., 2002. Proceedings of International Solid-State Sensor, Actuator, and Microsystems Workshop. pp. 198–201Google Scholar
  12. Y. Huang, N. Sekhon, J. Borninski, N. Chen, B. Rubinsky, Instantaneous, quantitative single-cell viability assessment by electrical evaluation of cell membrane integrity with microfabricated devices Sens. Actuators A 105, 31–39 (2003)Google Scholar
  13. M. Khine, A. Lau, C. Ionescu-Zanetti, J. Seo, L.P. Lee, A single cell electroporation chip Lab Chip 5, 38–43 (2004)CrossRefGoogle Scholar
  14. N. Kimelman, G. Pelled, G.A. Helm, J. Huard, E.M. Schwarz, D. Gazit, Review: gene- and stem cell-based therapeutics for bone regeneration and repair Tissue Eng 13(6), 1135–1150 (2007)CrossRefGoogle Scholar
  15. L.M. Mir, M. Belehdradek, C. Domenge, S. Orlowski, J. Poddevin Jr., G. Schwab, B. Luboinnski, C. Paoletti, Electrochemotherapy, a new antitumor treatment: first clinical trial C. R. Acad. Sci. III Sci. Vie. 313, 613–618 (1991)Google Scholar
  16. I.K. Moutsatsos, G. Turgeman, S. Zhou, B.G. Kurkalli, G. Pelled, L. Tzur, P. Kelley, N. Stumm, S. Mi, R. Müller, Y. Zilberman, D. Gazit, Exogenously regulated stem cell-mediated gene therapy for bone regeneration Mol. Ther 3(4), 449–461 (2001)CrossRefGoogle Scholar
  17. E. Neumann, K. Rosenheck, Permeability changes induced by electric impulses in vesicular membranes J. Membr. Biol 29(10), 279–290 (1972)Google Scholar
  18. E. Neumann, M. Schaefer-Ridder, Y. Wang, P.H. Hofschneider, Gene transfer into mouse lyoma cells by electroporation in high electrical fields EMBO J 1(7), 841–845 (1982)Google Scholar
  19. E. Neumann, A. Sprafke, H. Boldt, H. Wolf, in Biophysical considerations of membrane electroporation, ed. by D.C. Chassy, B.M. Saunders, J.A. Sowers, A.E. Chang. Guide to Electroporation and Electrofusion (Academic, San Diegeo, 1992), pp. 77–90[book auth.]Google Scholar
  20. M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R. Marshak, Multilineage potential of adult human mesenchymal stem cells Science 284(5411), 143–147 (1999)CrossRefGoogle Scholar
  21. B. Rubinsky, Y. Huang, Controlled electroporation and mass transfer across cell membranes US patent #6300108, Oct 9, 2001Google Scholar
  22. B. Rubinsky, G. Onik, P. Mikus, Irreversible electroporation: a new ablation modality—clinical implications Technol. Cancer Res. Treat. 6(1), 37–48 (2007)Google Scholar
  23. A.J.H. Sale, W.A. Hamilton, Effects of high electric fields on microorganisms. I. Killing of bacteria and yeasts Biochim. Biophys. Acta 148, 781–788 (1967)Google Scholar
  24. A.J.H. Sale, W.A. Hamilton, Effects of high electric fields on micro-organisms III. Lysis of erythrocytes and protoplasts Biochim. Biophys. Acta 163, 37–43 (1968)CrossRefGoogle Scholar
  25. R. Stämpfli, Reversible electrical breakdown of the excitable membrane of a Ranvier node An. Acad. Bras. Cienc. 30, 57–63 (1957)Google Scholar
  26. J. Teissie, T.Y. Tsong, Voltage modulation of Na/K transport in human eythrocytes J. Physiol. (Paris) 77, 1043–1053 (1981)Google Scholar
  27. G. Tresset, C. Iliescu, Electrcal control of loadaed biomimetic femtoliter vesicles in microfluidic systems Appl. Phys. Lett. 90, 173901–173904 (2007)CrossRefGoogle Scholar
  28. T.Y. Tsong, On electroporation of cell-membranes and some related phenomena Bioelectrochem. Bioenerg. 24(3), 271–295 (1990)CrossRefGoogle Scholar
  29. H.Y. Wang, A.K. Bhunia, C. Lu, A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage Biosens. Bioelectron. 22, 582–588 (2006)CrossRefGoogle Scholar
  30. J. Weaver, Y.A. Chizmadzhev, Theory of electroporation: a review Bioelectrochem. Biophys. Acta 41, 135–160 (2005)Google Scholar
  31. J. Wegener, C.R. Keese, I. Giaver, Recovery of adherent cells afer in situ electroporation monitored electrically Biotechniques 33(2), 348–354 (2002)Google Scholar
  32. T.D. Xie, T.Y. Tsong, Study of mechanisms of electrical field-induced DNA transfection II Biophys. J. 58, 897–903 (1990)CrossRefGoogle Scholar
  33. U. Zimmermann, Electric field-mediated fusion and related electrical phenomena Biochim. Biophys. Acta 694(3), 227–277 (1982)Google Scholar
  34. U. Zimmermann, G. Pilwat, F. Riemann, Dielectric breakdown of cell membranes Biophys. J. 14(11), 881–899 (1974)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Roee Ziv
    • 1
  • Yair Steinhardt
    • 2
  • Gadi Pelled
    • 2
  • Dan Gazit
    • 2
    • 3
  • Boris Rubinsky
    • 1
  1. 1.Research Center for Bioengineering in the Service of Humanity and Society, School of Computer Science and EngineeringHebrew UniversityJerusalemIsrael
  2. 2.Skeletal Biotechnology LaboratoryHebrew University—Hadassah Medical CampusJerusalemIsrael
  3. 3.Stem Cell Therapeutics Research Lab, Department of SurgeryCedars Sinai Medical CenterLos AngelesUSA

Personalised recommendations