Skip to main content
Log in

Micro-electroporation of mesenchymal stem cells with alternating electrical current pulses

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Micro-electroporation is an electroporation technology in which the electrical field that induces cell membrane poration is focused onto a single cell contained in a micro-electromechanical structure. Micro-electroporation has many unique attributes including that it facilitates real time control over the process of electroporation at the single cell level. Flow-through micro-electroporation expands on this principle and was developed to facilitate electroporation of a large numbers of cells with control over the electroporation of every single cell. However, our studies show that when electroporation employs conventional direct current (DC) electrical pulses the micro-electroporation system fails, because of electrolysis induced gas bubble formation. We report in this study that when certain alternating currents (AC) electrical pulses are used for micro-electroporation it becomes possible to avoid electrolytic gas bubble formation in a micro-electroporation flow-through system. The effect of AC micro-electroporation on electrolysis was found to depend on the AC frequency used. This concept was tested with mesenchymal stem cells and preliminary results show successful electroporation using this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • H. Aslan, Y. Zilberman, L. Kandel, M. Liebergall, R.J. Oskouian, D. Gazit, Z. Gazit, Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells Stem Cells 24(7), 1728–1737 (2006)

    Article  Google Scholar 

  • E. Burgermeister, A. Schnoebelen, A. Flament, J. Benz, M. Stihle, B. Gsell, A. Rufer, A. Ruf, B. Kuhn, H.P. Märki, J. Mizrahi, E. Sebokova, E. Niesor, M. Meyer, A novel partial agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma) recruits PPARgamma-coactivator-1alpha, prevents triglyceride accumulation, and potentiates insulin signaling in vitro Mol. Endocrinol 20(4), 809–830 (2006)

    Article  Google Scholar 

  • A.I. Caplan, S.P. Bruder, Mesenchymal stem cells: building blocks for molecular medicine in the 21st century Trends Mol. Med. 7, 259–264 (2001)

    Article  Google Scholar 

  • G.W. Fuller, Report on the Investigations into the Purification of the Ohio River Water at Louisville Kentucky (D. Van Nostrand Company, New York, 1898)

    Google Scholar 

  • Y. Gafni, G. Turgeman, M. Liebergal, G. Pelled, Z. Gazit, D. Gazit, Stem cells as vehicles for orthopedic gene therapy Gene Ther 11(4), 417–426 (2004)

    Article  Google Scholar 

  • D. Gazit, G. Turgeman, P. Kelley, E. Wang, M. Jalenak, Y. Zilberman, I. Moutsatsos, Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy J. Gene Med 1(2), 121–133 (1999)

    Article  Google Scholar 

  • A. Hoffmann, S. Czichos, C. Kaps, D. Bächner, H. Mayer, B.G. Kurkalli, Y. Zilberman, G. Turgeman, G. Pelled, G. Gross, D. Gazit, The T-box transcription factor Brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2 J. Cell Sci 115(4), 769–781 (2002)

    Google Scholar 

  • A. Hoffmann, G. Pelled, G. Turgeman, P. Eberle, Y. Zilberman, H. Shinar, K. Keinan-Adamsky, A. Winkel, S. Shahab, G. Navon, G. Gross, D. Gazit, Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells J. Clin. Invest 116(4), 940–952 (2006)

    Article  Google Scholar 

  • Y. Huang, B. Rubinsky, Micro-electroporation: improving the efficiency and understanding of electrical permeabilization of cells Biomed. Microdev 3, 145–150 (1999)

    Article  Google Scholar 

  • Y. Huang, B. Rubinsky, Microfabricated electroporation chip for single cell membrane permeabilization Sens. Actuators A 89, 242–249 (2001)

    Article  Google Scholar 

  • Y. Huang, B. Rubinsky, Flow-Through Micro-Electroporation Chip for Genetic Engineering of Individual Cells. Hilton Head, South Carolina: s.n., 2002. Proceedings of International Solid-State Sensor, Actuator, and Microsystems Workshop. pp. 198–201

  • Y. Huang, N. Sekhon, J. Borninski, N. Chen, B. Rubinsky, Instantaneous, quantitative single-cell viability assessment by electrical evaluation of cell membrane integrity with microfabricated devices Sens. Actuators A 105, 31–39 (2003)

    Google Scholar 

  • M. Khine, A. Lau, C. Ionescu-Zanetti, J. Seo, L.P. Lee, A single cell electroporation chip Lab Chip 5, 38–43 (2004)

    Article  Google Scholar 

  • N. Kimelman, G. Pelled, G.A. Helm, J. Huard, E.M. Schwarz, D. Gazit, Review: gene- and stem cell-based therapeutics for bone regeneration and repair Tissue Eng 13(6), 1135–1150 (2007)

    Article  Google Scholar 

  • L.M. Mir, M. Belehdradek, C. Domenge, S. Orlowski, J. Poddevin Jr., G. Schwab, B. Luboinnski, C. Paoletti, Electrochemotherapy, a new antitumor treatment: first clinical trial C. R. Acad. Sci. III Sci. Vie. 313, 613–618 (1991)

    Google Scholar 

  • I.K. Moutsatsos, G. Turgeman, S. Zhou, B.G. Kurkalli, G. Pelled, L. Tzur, P. Kelley, N. Stumm, S. Mi, R. Müller, Y. Zilberman, D. Gazit, Exogenously regulated stem cell-mediated gene therapy for bone regeneration Mol. Ther 3(4), 449–461 (2001)

    Article  Google Scholar 

  • E. Neumann, K. Rosenheck, Permeability changes induced by electric impulses in vesicular membranes J. Membr. Biol 29(10), 279–290 (1972)

    Google Scholar 

  • E. Neumann, M. Schaefer-Ridder, Y. Wang, P.H. Hofschneider, Gene transfer into mouse lyoma cells by electroporation in high electrical fields EMBO J 1(7), 841–845 (1982)

    Google Scholar 

  • E. Neumann, A. Sprafke, H. Boldt, H. Wolf, in Biophysical considerations of membrane electroporation, ed. by D.C. Chassy, B.M. Saunders, J.A. Sowers, A.E. Chang. Guide to Electroporation and Electrofusion (Academic, San Diegeo, 1992), pp. 77–90[book auth.]

    Google Scholar 

  • M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R. Marshak, Multilineage potential of adult human mesenchymal stem cells Science 284(5411), 143–147 (1999)

    Article  Google Scholar 

  • B. Rubinsky, Y. Huang, Controlled electroporation and mass transfer across cell membranes US patent #6300108, Oct 9, 2001

  • B. Rubinsky, G. Onik, P. Mikus, Irreversible electroporation: a new ablation modality—clinical implications Technol. Cancer Res. Treat. 6(1), 37–48 (2007)

    Google Scholar 

  • A.J.H. Sale, W.A. Hamilton, Effects of high electric fields on microorganisms. I. Killing of bacteria and yeasts Biochim. Biophys. Acta 148, 781–788 (1967)

    Google Scholar 

  • A.J.H. Sale, W.A. Hamilton, Effects of high electric fields on micro-organisms III. Lysis of erythrocytes and protoplasts Biochim. Biophys. Acta 163, 37–43 (1968)

    Article  Google Scholar 

  • R. Stämpfli, Reversible electrical breakdown of the excitable membrane of a Ranvier node An. Acad. Bras. Cienc. 30, 57–63 (1957)

    Google Scholar 

  • J. Teissie, T.Y. Tsong, Voltage modulation of Na/K transport in human eythrocytes J. Physiol. (Paris) 77, 1043–1053 (1981)

    Google Scholar 

  • G. Tresset, C. Iliescu, Electrcal control of loadaed biomimetic femtoliter vesicles in microfluidic systems Appl. Phys. Lett. 90, 173901–173904 (2007)

    Article  Google Scholar 

  • T.Y. Tsong, On electroporation of cell-membranes and some related phenomena Bioelectrochem. Bioenerg. 24(3), 271–295 (1990)

    Article  Google Scholar 

  • H.Y. Wang, A.K. Bhunia, C. Lu, A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage Biosens. Bioelectron. 22, 582–588 (2006)

    Article  Google Scholar 

  • J. Weaver, Y.A. Chizmadzhev, Theory of electroporation: a review Bioelectrochem. Biophys. Acta 41, 135–160 (2005)

    Google Scholar 

  • J. Wegener, C.R. Keese, I. Giaver, Recovery of adherent cells afer in situ electroporation monitored electrically Biotechniques 33(2), 348–354 (2002)

    Google Scholar 

  • T.D. Xie, T.Y. Tsong, Study of mechanisms of electrical field-induced DNA transfection II Biophys. J. 58, 897–903 (1990)

    Article  Google Scholar 

  • U. Zimmermann, Electric field-mediated fusion and related electrical phenomena Biochim. Biophys. Acta 694(3), 227–277 (1982)

    Google Scholar 

  • U. Zimmermann, G. Pilwat, F. Riemann, Dielectric breakdown of cell membranes Biophys. J. 14(11), 881–899 (1974)

    Article  Google Scholar 

Download references

Acknowledgments

Partial financial support was provided by the Hebrew University/Johnson&Johnson Fund for Innovative Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Gazit.

Additional information

Roee Ziv and Yair Steinhardt contributed equally to this publication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziv, R., Steinhardt, Y., Pelled, G. et al. Micro-electroporation of mesenchymal stem cells with alternating electrical current pulses. Biomed Microdevices 11, 95–101 (2009). https://doi.org/10.1007/s10544-008-9213-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9213-4

Keywords

Navigation