Biomedical Microdevices

, Volume 11, Issue 1, pp 9–16 | Cite as

An investigation of the effects of inlet channel geometry on electrokinetic instabilities

  • Yu-Jen Pan
  • Ruey-Jen Yang


Numerical and experimental investigations are performed to examine the feasibility of inducing electrokinetic instability (EKI) phenomena in two-channel junctions containing two aqueous electrolytes with a 10:1 conductivity ratio via the application of a low-intensity DC electrical field. A deep microchannel with 700 μm in depth and 100 μm in width was designed, fabricated and used in this investigation. The results show that when the species streams are injected such that the conductivity gradient between them is perpendicular to the DC electrical driving field, an EKI effect can only be induced by applying a high electrical field intensity of 0.54 V/cm. However, when the potentials applied to the reservoirs of the microchip are switched such that the conductivity gradient is not perpendicular to the electrical field, flow instability can be achieved by applying a lower electrical field intensity.


Electrokinetic instability Microfluidics Micro-mixing Microchannel 



The authors gratefully acknowledge the financial support provided to this study by the National Science Council of Taiwan under Grant No. NSC 95-2221-E-006-384-MY2 and NSC 96-2628-E-006-162-MY3.


  1. C.C. Chang, R.J. Yang, Microfluid Nanofluid 3, 501 (2007)CrossRefMathSciNetGoogle Scholar
  2. C.H. Chen, H. Lin, S.K. Lele, J.G. Santiago, J. Fluid Mech. 524, 263 (2005)MATHCrossRefGoogle Scholar
  3. R. Dhopeshwarkar, S.A. Li, R.M. Crooks, Lab Chip 5, 1148 (2005)CrossRefGoogle Scholar
  4. V. Dolnik, S. Liu, S. Jovanovich, Electrophoresis. 21, 41 (2000)CrossRefGoogle Scholar
  5. M.Z. Huang, R.J. Yang, C.H. Tai, C.H. Tsai, L.M. Fu, Biomed. Microdevices 8, 309 (2006)CrossRefGoogle Scholar
  6. S.C. Jacobson, J.M. Ramsey, Anal. Chem. 69, 3212 (1997)CrossRefGoogle Scholar
  7. C.H. Lin, C.H. Tsai, L.M. Fu, J. Micromech. Microeng. 15, 935 (2005)CrossRefGoogle Scholar
  8. H. Lin, B.D. Storey, M.H. Oddy, C.H. Chen, J.G. Santiago, Phys. Fluids. 16, 1922 (2004)CrossRefGoogle Scholar
  9. A. Manz, C.S. Effenhauser, N. Burggraf, D.J. Harrison, K. Seiler, J. Fluri, J. Micromech. Microeng. 4, 257 (1994)CrossRefGoogle Scholar
  10. M.H. Oddy, J.G. Santiago, J.C. Mikkelsen, Anal. Chem. 73, 5822 (2001)CrossRefGoogle Scholar
  11. Y.J. Pan, R.J. Yang, Biomed. Microdevices 9, 555 (2007)CrossRefGoogle Scholar
  12. Y.J. Pan, C.M. Ren, R.J. Yang, J. Micromech. Microeng. 17, 820 (2007)CrossRefGoogle Scholar
  13. L. Park, S.M. Shin, K.Y. Huh, I.S. Kang, Phys. Fluids. 17, 118101 (2005)CrossRefGoogle Scholar
  14. J.D. Posner, J.G. Santiago, J. Fluid Mech. 555, 1 (2006)MATHCrossRefGoogle Scholar
  15. R.F. Probstein, Physicochemical Hydrodynamics: An introduction (Wiley, New York, 1994)Google Scholar
  16. C.H. Tai, R.J. Yang, M.Z. Huang, C.W. Liu, C.H. Tsai, L.M. Fu, Electrophoresis 27, 4982 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Engineering ScienceNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations