Advertisement

Biomedical Microdevices

, Volume 10, Issue 4, pp 479–487 | Cite as

Interaction of biomolecules sequentially deposited at the same location using a microcantilever-based spotter

  • Nathalie Berthet-Duroure
  • Thierry Leïchlé
  • Jean-Bernard Pourciel
  • Cristina Martin
  • Joan Bausells
  • Emilio Lora-Tamayo
  • Francesc Perez-Murano
  • Jean M. François
  • Emmanuelle Trévisiol
  • Liviu Nicu
Article

Abstract

A microspotting tool, consisting of an array of micromachined silicon cantilevers with integrated microfluidic channels is introduced. This spotter, called Bioplume, is able to address on active surfaces and in a time-contact controlled manner picoliter of liquid solutions, leading to arrays of 5 to 20-μm diameter spots. In this paper, this device is used for the successive addressing of liquid solutions at the same location. Prior to exploit this principle in a biological context, it is demonstrated that: (1) a simple wash in water of the microcantilevers is enough to reduce by >96% the cross-contamination between the successive spotted solutions, and (2) the spatial resolution of the Bioplume spotter is high enough to deposit biomolecules at the same location. The methodology is validated through the immobilization of a 35mer oligonucleotide probe on an activated glass slide, showing specific hybridization only with the complementary strand spotted on top of the probe using the same microcantilevers. Similarly, this methodology is also used for the interaction of a protein with its antibody. Finally, a specifically developed external microfluidics cartridge is utilized to allow parallel deposition of three different biomolecules in a single run.

Keywords

Microcantilevers Microarray Biomolecules Hybridization Protein interaction 

Notes

Acknowledgment

This work was partially granted by the “Region Midi Pyrénées” district, by the “Réseau National des Génopôles”, and by the EC-funded project NaPa (Contract no. NMP4-CT-2003-500120). N.B-D. holds a fellowship from the French Ministry of Research and Education.

References

  1. J. Ali, I.R. Perch-Nielsen, C.R. Poulsen, D.D. Bang, P. Telleman, A. Wolff, Sens. Actuators 110, 3–10 (2004)CrossRefGoogle Scholar
  2. P.A. Auroux, D.R. Reyes, D. Iossifidis, A. Manz, Anal. Chem. 74(12), 2623–2636 (2002)CrossRefGoogle Scholar
  3. D. Banarjee, J. Fragala, T. Duenas, R. Shile, B. Rosner, Proceedings of the 7th Conference on Miniaturized Chemical and Biochemical Analysis System (mTAS 2003), 5–9 October, 57 (2003)Google Scholar
  4. P. Belaubre, M. Guirardel, G. Garcia, J.-B. Pourciel, V. Leberre, A. Dagkessamanskaia, E. Trévisiol, J.-M. François, C. Bergaud, Appl. Phys. Lett. 82(18), 3122–3124 (2003)CrossRefGoogle Scholar
  5. C. Bergaud, L. Nicu, Rev. Sci. Instrum. 71(6), 2487–2491 (2000)CrossRefGoogle Scholar
  6. U. Bockelmann, Curr. Opin. Struct. Biol. 14, 368–373 (2004)CrossRefGoogle Scholar
  7. C.L. Cheung, J.A. Camarero, B.W. Woods, T. Lin, J.E. Johnson, J.J. De Yoreo, J. Am. Chem. Soc. 125(23), 6848–6849 (2003)CrossRefGoogle Scholar
  8. Y.C. Chung, M.S. Jan, Y.C. Lin, J.H. Lin, W.C. Cheng, C.Y. Fan, Lab. Chip 4(2), 141–147 (2004)CrossRefGoogle Scholar
  9. P.S. Dittrich, A. Manz, Nat. Rev. Drug Discov. 5, 210–218 (2006)CrossRefGoogle Scholar
  10. C.J. Easley, J.M. Karlinsey, J.P. Landers, Lab. Chip 6, 601 (2006)CrossRefGoogle Scholar
  11. C.S. Effenhauser, A. Paulus, A. Manz, H.M. Widmer, Anal. Chem. 66, 2949–2953 (1994)CrossRefGoogle Scholar
  12. A. Fang, E. Dujardin, T. Ondarçuhu, J. Phys.: Confer. Series. 61, 298–301 (2007)CrossRefGoogle Scholar
  13. J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, J.K. Gimzewski, Science 288(5464), 316–318 (2000)CrossRefGoogle Scholar
  14. R.C. McGlennen, Clin. Chem. 47, 393–402 (2001)Google Scholar
  15. G. Wu, R.H. Datar, K.M. Hansen, T. Thundat, R.J. Cote, A. Majumdar, Nat. Biotechnol 19, 856–860 (2001)CrossRefGoogle Scholar
  16. M. Guirardel, L. Nicu, D. Saya, Y. Tauran, E. Cattan, D. Remiens, C. Bergaud, Jpn J Appl Phys 2(43), 111–114 (2004)CrossRefGoogle Scholar
  17. K. Jähnisch, V. Hessel, H. Löwe, M. Baerns, Angew. Chem Int. Edn. 43(4), 406–447 (2004)CrossRefGoogle Scholar
  18. T. Leïchlé, M.M. Silvan, P. Belaubre, A. Valsesia, G. Ceccone, F. Rossi, D. Saya, J.-B. Pourciel, L. Nicu, C. Bergaud, Nanotechnology 16, 525–531 (2005)CrossRefGoogle Scholar
  19. T. Leïchlé, L. Nicu, E. Descamps, B. Corso, P. Mailley, T. Livache, C. Bergaud, Appl. Phys. Lett. 88, 254108 (2006a)CrossRefGoogle Scholar
  20. T. Leïchlé, E. Descamps, B. Corso, S. Laurent, P. Mailley, T. Livache, J.B. Pourciel, C. Bergaud, L. Nicu, Proceedings of 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences (mTAS 2006), Tokyo (Japan), 774–776 (2006b)Google Scholar
  21. T. Leïchlé, D. Saya, J.-B. Pourciel, F. Mathieu, C. Bergaud, L. Nicu, IEEE NTC Review on Advances in Micro, Nano, and Molecular Systems 1, 337 (2006c)Google Scholar
  22. J.-G. Lee, K.H. Cheong, N. Huh, S. Kim, J.-W. Choi, C. Ko, Lab. Chips 6, 886 (2006)CrossRefGoogle Scholar
  23. K.B. Lee, S.-J. Park, C.A. Mirkin, J.C. Smith, M. Mrksich, Science 295, 1702–1705 (2002)CrossRefGoogle Scholar
  24. R.H. Liu, J. Yang, R. Lenigk, J. Bonanno, P. Grodzinski, Anal Chem. 76(7), 1824–31 (2004)CrossRefGoogle Scholar
  25. A. Meister, S. Jeney, M. Liley, T. Akiyama, U. Staufer, N.F. de Rooij, H. Heinzelmann, Microelectron. Eng. 67–68, 644–650 (2003)CrossRefGoogle Scholar
  26. R. Mukhopadhyay, V.V. Sumbayev, M. Lorentzen, J. Kjems, P.A. Andreasen, F. Besenbacher, Nano. Lett. 5, 2385–2388 (2005)CrossRefGoogle Scholar
  27. L. Nicu, C. Bergaud, J Micromech. Microeng. 14(5), 727–736 (2004)CrossRefGoogle Scholar
  28. L. Nicu, M. Guirardel, F. Chambosse, P. Rougerie, S. Hinh, E. Trevisiol, J.M. Francois, J.P. Majoral, A.M. Caminade, E. Cattan, C. Bergaud, Sens. Actuators B 110, 125–136 (2005)CrossRefGoogle Scholar
  29. T. Okamoto, T. Suzuki, N. Yamamoto, Nat. Biotechnol. 18(4), 438–441 (2000)CrossRefGoogle Scholar
  30. J.P. Renault, A. Bernard, A. Bietsch, B. Michel, H.R. Bosshard, E. Delamarche, J. Phys. Chem. B 107(3), 703–711 (2003)CrossRefGoogle Scholar
  31. K.S. Ryu, X.F. Wang, K. Shaikh, D. Bullen, E. Goluch, J. Zou, C. Liu, C.A. Mirkin, Appl. Phys. Lett. 85(1), 136–138 (2004)CrossRefGoogle Scholar
  32. M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Science 270, 467–470 (1995)CrossRefGoogle Scholar
  33. M. Templin, D. Stoll, J.M. Schwenk, O. Pötz, S. Kramer, T.O. Joos, Proteomics, 5, 2155–2166 (2003)CrossRefGoogle Scholar
  34. C. Thibault, V. Le Berre, S. Casimirius, E. Trévisiol, J.M. François, C. Vieu, J. Nanobiotechnol. 3, 7 (2005)CrossRefGoogle Scholar
  35. E. Trévisiol, V. Le Berre, J. Leclaire, G. Prativel, A.-M. Caminade, J.-P. Majoral, J. François, B. Meunier, New J. Chem. 27, 1713–1719 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nathalie Berthet-Duroure
    • 1
  • Thierry Leïchlé
    • 2
  • Jean-Bernard Pourciel
    • 2
  • Cristina Martin
    • 3
  • Joan Bausells
    • 3
  • Emilio Lora-Tamayo
    • 3
  • Francesc Perez-Murano
    • 3
  • Jean M. François
    • 1
  • Emmanuelle Trévisiol
    • 1
  • Liviu Nicu
    • 2
  1. 1.UMR 5504, UMR 792Ingénierie des Systèmes Biologiques et des Procédés & Plate-forme BiopucesToulouseFrance
  2. 2.LAAS-CNRSUniversité de ToulouseToulouseFrance
  3. 3.Instituto de Microelectronica de Barcelona, CNM-CSICCampus de la Universitat Autónoma de BarcelonaBellaterraSpain

Personalised recommendations