Advertisement

Biomedical Microdevices

, Volume 10, Issue 3, pp 355–365 | Cite as

Experimental investigation and computational modeling of hydrodynamics in bifurcating microchannels

  • Vijayakumar Janakiraman
  • Sudeep Sastry
  • Jaikrishnan R. Kadambi
  • Harihara Baskaran
Article

Abstract

Methods involving microfluidics have been used in several chemical, biological and medical applications. In particular, a network of bifurcating microchannels can be used to distribute flow in a large space. In this work, we carried out experiments to determine hydrodynamic characteristics of bifurcating microfluidic networks. We measured pressure drop across bifurcating networks of various complexities for various flow rates. We also measured planar velocity fields in these networks by using particle image velocimetry. We further analyzed hydrodynamics in these networks using mathematical and computational modeling. Our results show that the experimental frictional resistances of complex bifurcating microchannels are 25–30% greater than that predicted by Navier–Stokes equations. Experimentally measured velocity profiles indicate that flow distributes equally at a bifurcation regardless of the complexity of the network. Flow division other than bifurcation such as trifurcation or quadruplication can lead to heterogeneities. These findings were verified by the results from the numerical simulations.

Keywords

Microfluidics Flow visualization Transport Fluid dynamics Optimal transport Frictional losses Velocity distribution Biotransport Particle image velocimetry Capillary flow 

Notes

Acknowledgements

This work is supported by a grant from the National Institutes of Health (EB006203). The authors are thankful to Dr. Jean F. Welter for the use of COMSOL.

References

  1. R. Allen, J. Meyer, W. Knight, Hewlett-Packard J. 36(5), 21 (1985)Google Scholar
  2. H. Baskaran, N. Li Jeon, S.K. Dertinger, G.M. Whitesides, L. Van De Water, M. Toner, Nat. Biotechnol. 20(8), 826 (2002)Google Scholar
  3. D.J. Beebe, G.A. Mensing, G.M. Walker, Annu. Rev. Biomed. Eng. 4, 261 (2002)CrossRefGoogle Scholar
  4. A. Bejan, Shape, and Structure, from Engineering to Nature (Cambridge University Press, New York (2000), 324MATHGoogle Scholar
  5. J.P. Brody, P. Yager, R.E. Goldstein, R.H. Austin, Biophys. J. 71(6), 3430 (1996)CrossRefGoogle Scholar
  6. J. Burns, C. Ramshaw, Chem. Eng. Res. Des. 77(A3), 206 (1999)CrossRefGoogle Scholar
  7. M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke, Science 282(5388), 484 (1998)CrossRefGoogle Scholar
  8. M. Chaudhury, G. Whitesides, Langmuir 7(5), 1013 (1991)CrossRefGoogle Scholar
  9. S.B. Cheng, C.D. Skinner, J. Taylor, S. Attiya, W.E. Lee, G. Picelli, D.J. Harrison, Anal. Chem. 73(7), 1472 (2001)CrossRefGoogle Scholar
  10. B. Debusschere, G. Kovacs, Biosens. Bioelectron. 16(7–8), 543 (2001)CrossRefGoogle Scholar
  11. C. Fidkowski, M.R. Kaazempur-Mofrad, J. Borenstein, J.P. Vacanti, R. Langer, Y. Wang, Tissue Eng. 11(1–2), 302 (2005)CrossRefGoogle Scholar
  12. L.G. Griffith, G. Naughton, Science 295(5557), 1009 (2002)CrossRefGoogle Scholar
  13. A.G. Hadd, D.E. Raymond, J.W. Halliwell, S.C. Jacobson, J.M. Ramsey, Anal. Chem. 69(17), 3407 (1997)CrossRefGoogle Scholar
  14. V. Janakiraman, B.L. Kienitz, H. Baskaran, J. Med. Devices. 1(3), 237 (2007a)Google Scholar
  15. V. Janakiraman, K. Mathur, H. Baskaran, Ann. Biomed. Eng. 35(3), 337 (2007b)CrossRefGoogle Scholar
  16. X.N. Jiang, Z.Y. Zhou, J. Yao, Y. Li, X.Y. Ye, In Proceedings of the 8th International Conference on Solid-State Sensors and Actuators (IEEE, Stockholm, Sweden, 1995), p. 317Google Scholar
  17. J.R. Kadambi, C.R. Chen, Part. Sci. Technol. 2(8), 97 (1990)Google Scholar
  18. S. Kaihara, J. Borenstein, R. Koka, S. Lalan, E.R. Ochoa, M. Ravens, H. Pien, B. Cunningham, J.P. Vacanti, Tissue Eng. 6(2), 105 (2000)CrossRefGoogle Scholar
  19. G.S. Kassab, C.A. Rider, N.J. Tang, Y.C. Fung, Am. J. Physiol. 265(1 Pt 2), H350 (1993)Google Scholar
  20. M. Kohl, S. Abdel-Khalik, S. Jeter, D. Sadowski, Int. J. Heat Mass Transfer 48(8), 1518 (2005)CrossRefGoogle Scholar
  21. P. Krause, E. Obermeier, W. Wehl, Sens. Actuators, A-Phys. 53(1–3), 405 (1996)CrossRefGoogle Scholar
  22. H. Lorenz, M. Despont, N. Fahrni, N. Labianca, P. Renaud, P. Vettiger, J. Micromechanics Microengineering 7(3), 121 (1997)CrossRefGoogle Scholar
  23. C. Meinhart, S. Wereley, J. Santiago, Exp. Fluids 27(5), 414 (1999)CrossRefGoogle Scholar
  24. P. Nath, S. Roy, T. Conlisk, A.J. Fleischman, Biomed. Microdevices 7(3), 169 (2005)CrossRefGoogle Scholar
  25. M. Owen, P. Smith, J. Adhes. Sci. Technol. 8(10), 1063 (1994)CrossRefGoogle Scholar
  26. I. Papautsky, J. Brazzle, T. Ameel, A. Frazier, Sens. Actuators, A-Phys. 73(1–2), 101 (1999)CrossRefGoogle Scholar
  27. I. Papautsky, T. Ameel, A. Frazier, In ASME International Mechanical Engineering Congress and Exposition New York, 2001Google Scholar
  28. W. Qu, G. Mala, D. Li, Int. J. Heat Mass Transfer 43(3), 353 (2000)MATHCrossRefGoogle Scholar
  29. M. Raffel, C.E. Willert, J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, New York (1998), 253Google Scholar
  30. M. Shin, K. Matsuda, O. Ishii, H. Terai, M. Kaazempur-Mofrad, J. Borenstein, M. Detmar, J.P. Vacanti, Biomed. Microdevices 6(4), 269 (2004)CrossRefGoogle Scholar
  31. D. Sinton, Microfluidics and Nanofluidics 1(1), 2 (2004)CrossRefGoogle Scholar
  32. D. Tuckerman, R. Pease, Electron Device Lett. 2(5), 126 (1981)CrossRefGoogle Scholar
  33. A. Van Den Berg, W. Olthuis, P. Bergveld, In [Mu] TAS 2000 Symposium (Kluwer, Enschede, The Netherlands, 2000) p.623Google Scholar
  34. G. Walker, M. Ozers, D. Beebe, Biomedical Microdevices 4(3), 161(2002)CrossRefGoogle Scholar
  35. E.R. Weibel, Morphometry of the Human Lung (Academic, New York (1963), 151Google Scholar
  36. G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001)CrossRefGoogle Scholar
  37. P. Wilding, J. Pfahler, H.H. Bau, J.N. Zemel, L.J. Kricka, Clin. Chem. 40(1), 43 (1994)Google Scholar
  38. A. Woolley, D. Hadley, P. Landre, A. Demello, R. Mathies, M. Northrup, Anal. Chem. 68(23), 4081 (1996)CrossRefGoogle Scholar
  39. P. Wu, W. Little, Cryogenics 24(8), 415 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Vijayakumar Janakiraman
    • 1
  • Sudeep Sastry
    • 2
  • Jaikrishnan R. Kadambi
    • 2
  • Harihara Baskaran
    • 1
    • 3
    • 4
  1. 1.Department of Chemical EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.Department of Mechanical and Aerospace EngineeringCase Western Reserve UniversityClevelandUSA
  3. 3.Department of Biomedical EngineeringCase Western Reserve UniversityClevelandUSA
  4. 4.Case Western Reserve UniversityClevelandUSA

Personalised recommendations