Biomedical Microdevices

, Volume 10, Issue 2, pp 187–195 | Cite as

Continuous-flow thermal gradient PCR

  • Niel Crews
  • Carl Wittwer
  • Bruce Gale


Continuous-flow thermal gradient PCR is a new DNA amplification technique that is characterized by periodic temperature ramping with no cyclic hold times. The device reported in this article represents the first demonstration of hold-less thermocycling within continuous-flow PCR microfluidics. This is also the first design in which continuous-flow PCR is performed within a single steady-state temperature zone. This allows for straightforward miniaturization of the channel footprint, shown in this device which has a cycle length of just 2.1 cm. With a linear thermal gradient established across the glass device, the heating and cooling ramp rates are dictated by the fluid velocity relative to the temperature gradient. Local channel orientation and cross-sectional area regulate this velocity. Thus, rapid thermocycling occurs while the PCR chip is maintained at steady state temperatures and flow rates. Glass PCR chips (25 × 75 × 2 mm) of both 30 and 40 serpentine cycles have been fabricated, and were used to amplify a variety of targets, including a 181-bp segment of a viral phage DNA (ΦX174) and a 108-bp segment of the Y-chromosome, amplified from human genomic DNA. With this unique combination of hold-less cycling and gradient temperature ramping, a 40-cycle PCR requires less than 9 min, with the resulting amplicon having high yield and specificity.


PCR Rapid cycling Continuous-flow Thermal gradient Microfluidics 



Authors acknowledge the Utah State Center of Excellence Grants, the University of Utah Synergy Program, and the NSF IGERT Program for the funding of this work. Authors also wish to thank the respective members of the Wittwer and Gale research labs, whose valued contributions have allowed for this project to advance at a welcome pace.


  1. W. Cao, C.J. Easley, J.P. Ferrance, J.P. Landers, Anal. Chem. 78, 7222–7228 (2006)CrossRefGoogle Scholar
  2. J. Chiou, P. Matsudaira, A. Sonin, D. Ehrlich, Anal. Chem. 73, 2018–2021 (2001)CrossRefGoogle Scholar
  3. C.J. Easley, J.M. Karlinsey, J.M. Bienvenue, L.A. Legendre, M.G. Roper, S.H. Feldman, M.A. Hughes, E.L. Hewlett, T.J. Merkel, J.P. Ferrance, J.P. Landers, PNAS 103, 19272–19277 (2006)CrossRefGoogle Scholar
  4. T. Fukuba, T. Yamamoto, T. Naganuma, T. Fujii, Chem. Eng. J. 101, 151–156 (2004)CrossRefGoogle Scholar
  5. P. Garstecki, M.J. Fuerstman, M.A. Fischbach, S.K. Sia, G.M. Whitesides, Lab Chip 6, 207–212 (2006)CrossRefGoogle Scholar
  6. M. Hashimoto, P.C. Chen, M.W. Mitchell, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy, Lab Chip 4, 638–645 (2004)CrossRefGoogle Scholar
  7. R.M. Jendrejack, E.T. Dimalanta, D.C. Schwartz, M.D. Graham, J.J. de Pablo, Phys. Rev. Lett. 91, (2003)Google Scholar
  8. W.M. Kays, M. E. Crawford. Convective Heat and Mass Transfer (McGraw-Hill, New York, 1993), pp. 110–116Google Scholar
  9. M.U. Kopp, A.J. de Mello, A. Manz, Science 280, 1046–1048 (1998)CrossRefGoogle Scholar
  10. J. Lapham, J.P. Rife, P.B. Moore, D.M. Crothers, J. Biomol. Nmr. 10, 255–262 (1997)CrossRefGoogle Scholar
  11. S.F. Li, D.Y. Fozdar, M.F. Ali, H. Li, D.B. Shao, D.M. Vykoukal, J. Vykoukal, P.N. Floriano, M. Olsen, J.T. McDevitt, P.R.C. Gascoyne, S.C. Chen, Journal of Microelectromechanical Systems 15, 223–236 (2006)CrossRefGoogle Scholar
  12. H.B. Mao, M.A. Holden, M. You, P.S. Cremer, Anal. Chem. 74, 5071–5075 (2002)CrossRefGoogle Scholar
  13. T. Nakayama, Y. Kurosawa, S. Furui, K. Kerman, M. Kobayashi, S.R. Rao, Y. Yonezawa, K. Nakano, A. Hino, S. Yamamura, Y. Takamura, E. Tamiya, Anal. Bioanal. Chem. 386, 1327–1333 (2006)CrossRefGoogle Scholar
  14. P.J. Obeid, T.K. Christopoulos, Anal. Chim. Acta 494, 1–9 (2003a)CrossRefGoogle Scholar
  15. P.J. Obeid, T.K. Christopoulos, H.J. Crabtree, C.J. Backhouse, Anal. Chem. 75, 288–295 (2003b)CrossRefGoogle Scholar
  16. K. Pappaert, J. Biesemans, D. Clicq, S. Vankrunkelsven, G. Desmet, Lab Chip 5, 1104-1110 (2005)CrossRefGoogle Scholar
  17. K.M. Ririe, R.P. Rasmussen, C.T. Wittwer, Anal. Biochem. 245, 154–160 (1997)CrossRefGoogle Scholar
  18. M.G. Roper, C.J. Easley, L.A. Legendre, J.A.C. Humphrey, J.P. Landers, Anal. Chem. 79, 1294–1300 (2007)CrossRefGoogle Scholar
  19. I. Schneegass, R. Brautigam, J.M. Kohler, Lab Chip 1, 42–49 (2001)CrossRefGoogle Scholar
  20. P.C. Simpson, A.T. Woolley, R.A. Mathies, Biomed. Microdevices 1, 7–25 (1998)CrossRefGoogle Scholar
  21. K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, H. Misawa, Sens. Actuators, B: Chem. 84, 283–289 (2002)CrossRefGoogle Scholar
  22. H. Wang, J.F. Chen, L. Zhu, H. Shadpour, M.L. Hupert, S.A. Soper, Anal. Chem. 78, 6223–6231 (2006)CrossRefGoogle Scholar
  23. C.T. Wittwer, M.G. Hermann, in PCR Applications: Protocols for Functional Genomics, eds. by M.A. Innis, D.H. Gelfand, J.J. Sninsky (Academic, San Diego, 1999), pp. 211–229Google Scholar
  24. C.T. Wittwer, G.B. Reed, K.M. Ririe, in “Rapid Cycle DNA Amplification.” The Polymerase Chain Reaction, eds. by K.B. Mullis, F. Ferre, R. Gibbs (Springer, Deerfield Beach, 1994), pp. 174–181Google Scholar
  25. M. Yang, R. Pal, M. A. Burns, J Micromechanics Microengineering 15, 221–230 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA
  2. 2.Department of PathologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations