Advertisement

Biomedical Microdevices

, Volume 10, Issue 1, pp 21–33 | Cite as

A titer plate-based polymer microfluidic platform for high throughput nucleic acid purification

  • D. S.-W. Park
  • M. L. Hupert
  • M. A. Witek
  • B. H. You
  • P. Datta
  • J. Guy
  • J.-B. Lee
  • S. A. Soper
  • D. E. Nikitopoulos
  • M. C. Murphy
Article

Abstract

A 96-well solid-phase reversible immobilization (SPRI) reactor plate was designed to demonstrate functional titer plate-based microfluidic platforms. Nickel, large area mold inserts were fabricated using an SU-8 based, UV-LIGA technique on 150 mm diameter silicon substrates. Prior to UV exposure, the prebaked SU-8 resist was flycut to reduce the total thickness variation to less than 5 μm. Excellent UV lithography results, with highly vertical sidewalls, were obtained in the SU-8 by using an UV filter to remove high absorbance wavelengths below 350 nm. Overplating of nickel in the SU-8 patterns produced high quality, high precision, metal mold inserts, which were used to replicate titer plate-based SPRI reactors using hot embossing of polycarbonate (PC). Optimized molding conditions yielded good feature replication fidelity and feature location integrity over the entire surface area. Thermal fusion bonding of the molded PC chips at 150°C resulted in leak-free sealing, which was verified in leakage tests using a fluorescent dye. The assembled SPRI reactor was used for simple, fast purification of genomic DNA from whole cell lysates of several bacterial species, which was verified by PCR amplification of the purified genomic DNA.

Keywords

Titer plate Multi-well microfluidic platform Solid-phase reversible immobilization UV-LIGA Large area mold insert Micro molding Nucleic acid purification 

Notes

Acknowledgements

This work was supported by the National Science Foundation and the State of Louisiana Board of Regents Support Fund under grant number EPS-0346411, and the State of Louisiana Board of Regents Support Fund, Industrial Ties Program through grant number LEQSF(2005-08)-RD-B-04. The authors thank the staff of the Center for Advanced Microstructures and Devices (CAMD) at Louisiana State University for the microfabrication support. J. Guy was funded by a Louisiana Governor’s Biotechnology Initiative grant.

References

  1. P.-A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Anal. Chem. 74, 2637 (2002)CrossRefGoogle Scholar
  2. P.-A. Auroux, Y. Koc, A. deMello, A. Manz, P.J.R. Day, Lab Chip. 4, 534 (2004)CrossRefGoogle Scholar
  3. D.O. Barrett, A. Maha, Y. Wang, S.A. Soper, D.E. Nikitopoulos, M.C. Murphy, in MicroFluidics, BioMEMS, and Medical Microsystems II, vol. 5345, ed. by P. Woias, I. Papautsky. (SPIE, Bellingham, WA, 2004), p. 78Google Scholar
  4. J. Bear, Dynamics of Fluids in Porous Media (Dover Publications, New York, NY, 1988)Google Scholar
  5. F. Darvas, G. Dormán, P. Krajcsi, L.G. Puskás, Z. Kovári, Z. Lörincz, L. Ürge, Curr. Med. Chem. 11, 3119 (2004)Google Scholar
  6. P. Datta, F. Xu, S. Gurung, S.A. Soper, J. Goettert, in Microfluidics, BioMEMS, and Medical Microsystems IV, vol. 6112, ed. by I. Papautsky, W. Wang (SPIE, Bellingham, WA, 2006), p. 611208Google Scholar
  7. M.M. DeAngelis, D.G. Wang, T.L. Hawkins, Nucleic Acids Res. 23, 4742 (1995)CrossRefGoogle Scholar
  8. T.L. Edwards, S.K. Mohanty, R.K. Edwards, C.L. Thomas, A.B. Frazier, Microfluidic Devices and Systems III, vol. 4177, ed. by C.H. Mastrangelo, H. Becker, (SPIE, Bellingham, WA, 2000), p. 75Google Scholar
  9. C.J. Elkin, P.M. Richardson, H.M. Fourcade, N.M. Hammon, M.J. Pollard, P.F. Predki, T. Glavina, T.L. Hawkins, Genome Res. 11, 1269 (2001)CrossRefGoogle Scholar
  10. C.J. Elkin, H. Kapur, T. Smith, D. Humphries, M. Pollard, N. Hammon, T. Hawkins, BioTechniques, 32(6), 1296 (2002)Google Scholar
  11. D. Erickson, D. Li, Anal. Chim. Acta. 507, 11 (2004)CrossRefGoogle Scholar
  12. J.D. Gelorme, R.J. Cox, S.A.R. Guterrez, US Patent No. 4882245 (21 Nov 1989)Google Scholar
  13. A. Gerlach, G. Knebel, A.E. Guber, M. Heckele, D. Herrmann, A. Muslija, Th. Schaller, Microsyst. Technol. 7(5–6), 265 (2002a)CrossRefGoogle Scholar
  14. A. Gerlach, G. Knebel, A.E. Guber, M. Heckele, D. Herrmann, A. Muslija, Th. Schaller, Sens. Mater. 14(3), 119 (2002b)Google Scholar
  15. A.E. Guber, M. Heckele, D. Herrmann, A. Muslija, V. Salie, L. Eichhorn, T. Gietzelt, W. Hoffmann, P.C. Hauser, J. Tanyanyiwa, A. Gerlach, N. Gottschlich, G. Knebel, Chem. Eng. J. 101, 447 (2004)CrossRefGoogle Scholar
  16. T.L. Hawkins, T.O’Connor-Morin, A. Roy, C. Santillan, Nucleic Acids Res. 22, 4543 (1994)CrossRefGoogle Scholar
  17. M. Heckele, W.K. Schomburg, J. Micromech. Microeng. 14, R1 (2004)CrossRefGoogle Scholar
  18. K. Honma, T. Miyata, T. Ochiya, Curr. Drug Discov. Technol. 1, 287 (2004)CrossRefGoogle Scholar
  19. Y. Huang, E.L. Mather, J.L. Bell, M. Madou, Anal. Bioanal. Chem. 372, 49 (2002)CrossRefGoogle Scholar
  20. M.L. Hupert, W.J. Guy, S.D. Llopis, C. Situma, S. Rani, D.E. Nikitopoulos, S.A. Soper, in Microfluidics, BioMEMS, and Medical Microsystems IV, vol. 6112, ed. by I. Papautsky, W. Wang (SPIE, Bellingham, WA, 2006), p. 61220BGoogle Scholar
  21. K.S. Kim, High Aspect Ratio Microstructures and Their Applications to MEMS, Ph.D. dissertation (The University of Texas at Dallas, Richardson, TX, USA, 2004)Google Scholar
  22. D.S. Kim, S.H. Lee, C.H. Ahn, J.Y. Lee, T.H. Kwon, Lab Chip. 6, 794 (2006)CrossRefGoogle Scholar
  23. S.J. Lee, S.Y. Lee, Appl. Microbiol. Biotechnol. 64, 289 (2004)CrossRefGoogle Scholar
  24. J. Liu, C. Hansen, S. Quake, Anal. Chem. 75, 4718 (2003)CrossRefGoogle Scholar
  25. H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, P. Renaud, Sens. Actuators, A, Phys. 64(1), 33 (1998)CrossRefGoogle Scholar
  26. H. Lu, B. Pillans, J.-C. Lee, K. Kim, J.-B. Lee, Microsyst. Technol. 13(3–4), 237 (2007)Google Scholar
  27. D.A. Mair, E. Geiger, A.P. Pisano, J.M.J. Fréchet, F. Svec, Lab Chip. 6, 1346 (2006)CrossRefGoogle Scholar
  28. H. Mekaru, T. Yamada, S. Yan, T. Hattori, Microsyst. Technol. 10, 682 (2004)CrossRefGoogle Scholar
  29. M.W. Mitchell, X. Liu, Y. Bejat, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy, in MicroFluidics, BioMEMS, and Medical Microsystems, vol. 4982, ed. by H. Becker, P. Woias (SPIE, Bellingham, WA, 2003), p. 83Google Scholar
  30. Y. Murakoshi, C.S. Xue, T. Shimizu, R. Maeda, in 2003 Proceedings of the Fifth Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, ed. by B. Courtois, K. Markus, J. Korvink, J.M. Karam, K. Bergman, B. Michel, p. 304Google Scholar
  31. P.J. Obeid, T.K. Christopoulos, H.J. Crabtree, C.J. Backhouse, Anal. Chem. 75, 288 (2003)CrossRefGoogle Scholar
  32. B.M. Paegel, S.H.I. Yeung, R.A. Mathies, Anal. Chem. 74, 5092 (2002)CrossRefGoogle Scholar
  33. R. Pal, M. Yang, R. Lin, B.N. Johnson, N. Srivastava, S.Z. Razzacki, K.J. Chomistek, D.C. Heldsinger, R.M. Haque, V.M. Ugaz, P.K. Thwar, Z. Chen, K. Alfano, M.B. Yim, M. Krishnan, A.O. Fuller, R.G. Larson, D.T. Burke, M.A. Burns, Lab Chip. 5, 1024 (2005)CrossRefGoogle Scholar
  34. D.S. Park, M. Hupert, J. Guy, P. Datta, J.-B. Lee, M. Witek, B.H. You, S.A. Soper, D.E. Nikitopoulos, M.C. Murphy, in 2006 Proceedings of the ASME International Mechanical Engineering Congress & Exposition (ASME, New York, NY, 2006), IMECE2006-15275Google Scholar
  35. D.S. Park, M.L. Hupert, M. Witek, J. Guy, P. Datta, B.H. You, S.A. Soper, M.C. Murphy, in the 20th International Conference on Micro Electro Mechanical Systems (MEMS 2007), p. 433Google Scholar
  36. S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, S.A. Soper, Lab Chip, 2(2), 88 (2002)CrossRefGoogle Scholar
  37. D.R. Reyes, D. Iossifidis, P.-A. Auroux, A. Manz, Anal. Chem. 74(12), 2623 (2002)CrossRefGoogle Scholar
  38. Society for Biomolecular Screening (SBS), Microplate Standards Development Committee, ANSI/SBS 1-2004 (SBS, Microplate Standards Development Committee, Danbury, CT, 2004)Google Scholar
  39. F.M. White, Viscous Fluid Flow (McGraw-Hill, New York, 1974)MATHGoogle Scholar
  40. F.M. White, Fluid Mechanics (McGraw-Hill, New York, 1986)Google Scholar
  41. M.A. Witek, S. Wei, B. Vaidya, A.A. Adams, L. Zhu, W. Stryjewski, R.L. McCarley, S.A. Soper, Lab Chip. 4, 464 (2004)CrossRefGoogle Scholar
  42. M.A. Witek, S.D. Llopis, A. Wheatley, R.L. McCarley, S.A. Soper, Nucleic Acid Res. 34(10), e74 (2006)CrossRefGoogle Scholar
  43. M. Worgull, M. Heckele, Microsyst. Technol. 10(5), 432 (2004)CrossRefGoogle Scholar
  44. M. Worgull, M. Heckele, W.K. Schomburg, Microsyst. Technol. 12(1–2), 110 (2005)CrossRefGoogle Scholar
  45. Y. Xu, B. Vaidya, A.B. Patel, S.M. Ford, R.L. McCarley, S.A. Soper, Anal. Chem. 75(13), 2975 (2003)CrossRefGoogle Scholar
  46. B. Ziaie, A. Baldi, M. Lei, Y. Gu, R.A. Siegel, Adv. Drug Deliv. Rev. 56, 145 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • D. S.-W. Park
    • 1
  • M. L. Hupert
    • 1
    • 2
  • M. A. Witek
    • 1
    • 2
  • B. H. You
    • 1
    • 3
  • P. Datta
    • 4
  • J. Guy
    • 1
  • J.-B. Lee
    • 5
  • S. A. Soper
    • 1
    • 2
  • D. E. Nikitopoulos
    • 1
    • 3
  • M. C. Murphy
    • 1
    • 3
  1. 1.Center for Bio-Modular Multi-Scale SystemsLouisiana State UniversityBaton RougeUSA
  2. 2.Department of ChemistryLouisiana State UniversityBaton RougeUSA
  3. 3.Department of Mechanical EngineeringLouisiana State UniversityBaton RougeUSA
  4. 4.Center for Advanced Microstructures and Devices (CAMD)Louisiana State UniversityBaton RougeUSA
  5. 5.Erik Jonsson School of Engineering and Computer ScienceUniversity of Texas at DallasDallasUSA

Personalised recommendations