Biomedical Microdevices

, Volume 9, Issue 6, pp 869–875 | Cite as

Transcriptome analysis device based on liquid phase detection by fluorescently labeled nucleic acid probes

  • Ryuji Yokokawa
  • Soichiro Tamaoki
  • Takashi Sakamoto
  • Akira Murakami
  • Susumu Sugiyama


Personalized medicine based on genetic information has been proposed as an attractive medical treatment. It is supported by the rapid development of the gene diagnosis utilizing on-chip analysis technology. This study reports characterizations of mRNA detection device by its hybridization with 2′-O-methyl oligoribonucleotide probe in a liquid phase, which eliminates time-consuming processes such as removing non-hybridized probes in conventional solid phase detection. In order to achieve a high sensitivity in the fluorescent detection of the target mRNA, we have optimized detection channel depth and width for a microfluidic device, and investigated polydimethyl siloxiane components and observation setup to minimize background noise. Adopting optimized channel dimensions and setup for the probe, the fluorescent intensity increased 3.3-fold at the lowest detectable concentration of 7.8 nM.


MicroTAS Fluorescent detection Microfluidic device Hybridization mRNA 



PDMS components were supplied by Shin-Etsu Chemical Co., Ltd. This work was carried out under the 21st century COE program “Micro/Nano Science and Integrated Systems” supported by the Ministry of Education and Kyoto nanotechnology cluster supported by the Advanced Software Technology and Mechatronics Research Institute.


  1. F. Bachmair, C. Huber, G. Daxenbichler, Clin. Chim. Acta 279, 25–34 (1999)CrossRefGoogle Scholar
  2. S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattinger, E. Delamarche, Lab Chip 4, 563–569 (2004)CrossRefGoogle Scholar
  3. J.L. DeRisi, V.R. Iyer, P.O. Brown, Science 278, 680–686 (1997)CrossRefGoogle Scholar
  4. R.A. Heller, M. Schena, A. Chai, D. Shalon, T. Bedilion, J. Gilmore, D.E. Woolley, R.W. Davis, Proc. Natl. Acad. Sci. U. S. A. 94, 2150–2155 (1997)CrossRefGoogle Scholar
  5. S. Hu, X. Ren, M. Bachman, C.E. Sims, G.P. Li, N. Allbritton, Anal. Chem. 74, 4117–4123 (2002)CrossRefGoogle Scholar
  6. M. Kanai, H. Abe, T. Munaka, Y. Fujiyama, D. Uchida, A. Yamayoshi, H. Nakanishi, A. Murakami, S. Shoji, Sens. Actuators A 114, 129–134 (2004)CrossRefGoogle Scholar
  7. E.P. Kartalov, S.R. Quake, Nucleic Acids Res. 32, 2873–2879 (2004)CrossRefGoogle Scholar
  8. S. Kwakye, A. Baeumner, Anal. Bioanal. Chem. 376, 1062–1068 (2003)CrossRefGoogle Scholar
  9. S.J. Lee, S.Y. Lee, Appl. Microbiol. Biotechnol. 64, 289–299 (2004)CrossRefGoogle Scholar
  10. R.Q. Liang, W. Li, Y. Li, C.Y. Tan, J.X. Li, Y.X. Jin, K. C. Ruan, Nucleic. Acids Res. 33, e17 (2005)CrossRefGoogle Scholar
  11. A. Mahara, R. Iwase, T. Sakamoto, K. Yamana, T. Yamaoka, A. Murakami, Angew. Chem. Int. Ed. Engl. 41, 3648–3650, 3518 (2002)CrossRefGoogle Scholar
  12. A. Manz, N. Graber, H. M. Widmer, Sens. Actuators B1, 244–248 (1990)Google Scholar
  13. H. Nakanishi, T. Nishimoto, A. Arai, H. Abe, M. Kanai, Y. Fujiyama, T. Yoshida, Electrophoresis 22, 230–234 (2001)CrossRefGoogle Scholar
  14. B.P. Nelson, T.E. Grimsrud, M.R. Liles, R.M. Goodman, R.M. Corn, Anal. Chem. 73, 1–7 (2001)CrossRefGoogle Scholar
  15. M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Science 270, 467–70 (1995)CrossRefGoogle Scholar
  16. Y.S. Shin, K. Cho, S.H. Lim, S. Chung, S.-J. Park, C. Chung, D.-C. Han, J. K. Chang, J. Micromech. Microeng. 13, 768–774 (2003)CrossRefGoogle Scholar
  17. S.-W. Tsai, M. Loughran, I. Karube, J. Micromech. Microeng. 14, 1693–1699 (2004)CrossRefGoogle Scholar
  18. A. Wolff, I.R. Perch-Nielsen, U.D. Larsen, P. Friis, G. Goranovic, C.R. Poulsen, J.P. Kutter, P. Telleman, Lab Chip 3, 22–27 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ryuji Yokokawa
    • 1
  • Soichiro Tamaoki
    • 1
  • Takashi Sakamoto
    • 2
  • Akira Murakami
    • 2
  • Susumu Sugiyama
    • 1
  1. 1.Department of Microsystem TechnologyRitsumeikan UniversityShigaJapan
  2. 2.Department of Chemistry and Materials TechnologyKyoto Institute of TechnologyKyotoJapan

Personalised recommendations