Advertisement

Biomedical Microdevices

, Volume 9, Issue 5, pp 745–750 | Cite as

Cell loss in integrated microfluidic device

  • Liang Zhu
  • Xue Li Peh
  • Hong Miao Ji
  • Cheng Yong Teo
  • Han Hua Feng
  • Wen-Tso Liu
Article

Abstract

Cell loss during sample transporting from macro-components to micro-components in integrated microfluidic devices can considerably deteriorate cell detection sensitivity. This intrinsic cell loss was studied and effectively minimized through (a) increasing the tubing diameter connecting the sample storage and the micro-device, (b) applying a hydrodynamic focusing approach for sample delivering to reduce cells contacting and adhesion on the walls of micro-channel and chip inlet; (c) optimizing the filter design with a zigzag arrangement of pillars (13 μm in chamber depth and 0.8 μm in gap) to prolong the effective filter length, and iv) the use of diamond shaped pillar instead of normally used rectangular shape to reduce the gap length between any two given pillar (i.e. pressure drop) at the filter region. Cell trapping and immunofluorescent detection of 12 Giardia lamblia and 12 Cryptosporidium parvum cells in 150 μl solution and 50 MCF-7 breast cancer cells in 150 μl solution was completed within 15 min with trapping efficiencies improved from 79 ± 11%, 50.8 ± 5.5% and 41.3 ± 3.6% without hydrodynamic focusing, respectively, to 90.8 ± 5.8%, 89.8 ± 16.6% and 77.0 ± 9.2% with hydrodynamic focusing.

Keywords

Lab-on-a-chip Microfluidic device Trapping efficiency Hydrodynamic focusing Cell loss Immnunofluorescent assay 

References

  1. H. Andersson, W. van der Wijngaart, P. Enoksson, G. Stemme, Sens. Actuators B Chem. B67, 203 (2000)CrossRefGoogle Scholar
  2. D. Belder, A. Deege, H. Husmann, F. Kohler, M. Ludwig, Electrophoresis 22, 3813 (2001)CrossRefGoogle Scholar
  3. Y. Berthois, N. Pourreau-Schneider, P. Gandilhon, H. Mittre, N. Tubiana, P.M. Martin, J. Steroid Biochem. 25, 963 (1986)CrossRefGoogle Scholar
  4. T. Braschler, R. Johann, R. Heule, L. Metref, P. Renaud, Lab Chip 5, 553 (2005)CrossRefGoogle Scholar
  5. J.D. Cox, M.S. Curry, S.K. Skirboll, P.L. Gourley, D.Y. Sasaki, Biomaterials 23, 929 (2002)CrossRefGoogle Scholar
  6. C.K. Fredrickson, Z.H. Fan, Lab Chip 4, 526 (2004)CrossRefGoogle Scholar
  7. A.Y. Fu, H.P. Chou, C. Spence, F.H. Arnold, S.R. Quake, Anal. Chem. 74, 2451 (2002)CrossRefGoogle Scholar
  8. Y. Huang, K.L. Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M.J. Heller, J.P. O’Connell, M. Krihak, Anal. Chem. 73, 1549 (2001)CrossRefGoogle Scholar
  9. R.M. Johann, Anal. Bioanal. Chem. 385, 408 (2006)CrossRefGoogle Scholar
  10. B.J. Kirby, A.R. Wheeler, R.N. Zare, J.A. Fruetel, T.J. Shepodd, Lab Chip 3, 5 (2003)CrossRefGoogle Scholar
  11. R.H. Liu, J. Yang, R. Lenigk, J. Bonanno, P. Grodzinski, Anal. Chem. 76, 1824 (2004)CrossRefGoogle Scholar
  12. P.D. Moreira, P.R. Marreco, A.M. Moraes, M.L. F. Wada, S.C. Genari, J. Biomed. Mater. Res., Part B 69B, 38 (2004)CrossRefGoogle Scholar
  13. V.Z. Peter, Microchip Fabrication: A Practical Guide to Semiconductor Processing (Mc. Graull-Hill, New York, 2000)Google Scholar
  14. J.L. Shohet, R.M. Albrecht, S. Esnault, J.L. Lauer, C. Pratoomtong, J.S. Malter, F.S. Denes, U. von Andrian, S.B. Shobet, Blood 100, 72B (2002)CrossRefGoogle Scholar
  15. P. Wilding, L.J. Kricka, J. Cheng, G. Hvichia, M.A. Shoffner, P. Fortina, Anal. Biochem. 257, 95 (1998)CrossRefGoogle Scholar
  16. Z. Yang, R. Maeda, Electrophoresis 23, 3474 (2002)CrossRefGoogle Scholar
  17. Z. Yang, R. Maeda, J. Chromatogr. A 1013, 29 (2003)CrossRefGoogle Scholar
  18. Q. Zhang, L. Zhu, H.H. Feng, S. Ang, F.S. Chau, W.T. Liu, Anal. Chim. Acta. 556, 171 (2006)CrossRefGoogle Scholar
  19. L. Zhu, Q. Zhang, H. Feng, S. Ang, F.S. Chau, W.T. Liu, Lab Chip 4, 337 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Liang Zhu
    • 1
  • Xue Li Peh
    • 1
  • Hong Miao Ji
    • 1
  • Cheng Yong Teo
    • 1
  • Han Hua Feng
    • 1
  • Wen-Tso Liu
    • 1
    • 2
  1. 1.Institute of MicroelectronicsAgency for Science, Technology and ResearchSingaporeSingapore
  2. 2.Environmental Science and Engineering ProgramNational University of SingaporeSingaporeSingapore

Personalised recommendations