Advertisement

Biomedical Microdevices

, Volume 9, Issue 4, pp 603–609 | Cite as

A flexible and wearable biosensor for tear glucose measurement

  • Shigehito Iguchi
  • Hiroyuki Kudo
  • Takao Saito
  • Mitsuhiro Ogawa
  • Hirokazu Saito
  • Kimio Otsuka
  • Akio Funakubo
  • Kohji Mitsubayashi
Article

Abstract

A flexible and wearable amperometoric glucose sensor was fabricated and tested. Also, the sensor was utilized to tear glucose monitoring. The sensor was constructed by immobilizing GOD onto a flexible oxygen electrode (Pt working electrode and Ag/AgCl counter/reference electrode), which was fabricated using “Soft-MEMS” techniques onto a functional polymer membrane. In purpose of bioinstrumentation, adhesive agents were not used for constructing the flexible biosensor. Linear relationship between glucose concentration and output current was obtained in a range of 0.025–1.475 mmol/l, with a correlation coefficient of 0.998. Current dependences on pH and temperature were also evaluated. The current was largest at pH 7.0 and the current increased when temperature increased. This indicates that the output current depends on enzyme activity. Based on the basic characteristics investigation, the glucose sensor was applied to measurement of glucose in tear fluids on an eye site of a Japan white rabbit. The change of tear glucose level induced by oral-administration of glucose was monitored as a current change of the sensor attached on the eye site. In this investigation, the tear glucose level varied from 0.16 to 0.46 mmol/l. Although there was a delay of several tens of minutes towards blood sugar level, it is considered to be possible that non-invasive continuous glucose monitoring can be realized using the flexible biosensor.

Keywords

Wearable Biosensor Soft-MEMS Non-invasive Measurement Glucose Tear fluid Bioinstrumentation 

Notes

Acknowledgement

This work is partly supported by JSPS (Japan Society for the promotion of Science) and Nakatani Foundation of Electronic Measuring Technology Advancement.

References

  1. R. Badugu, J.R. Lakowicz, C.D. Geddes, J. Fluoresc. 13, 371–374 (2003)CrossRefGoogle Scholar
  2. R. Chen, Z. Jin, L.A. Colon, J. Capillary Electrophor. 3, 243–248 (1996)Google Scholar
  3. W. Clarke, D.J. Becker, D. Cox, J.V. Santiago, N.H. White, J. Betschart, K. Eckenrode, L.A. Levandoski, E.A. Prusinki, L.M. Simineiro, A.L. Snyder, A.M. Tideman, T. Yaegar, Diabetes Res. Clin. Pract. 4, 209–214 (1988)CrossRefGoogle Scholar
  4. K.M. Daum, R.M. Hill, Invest. Ophthalmol. Vis. Sci. 22, 509–515 (1982)Google Scholar
  5. S. D’Auria, N. Dicesare, Z. Gryczynski, I. Gryczynski, M. Rossi, J.R. Lakowicz, Biochem. Biophys. Res. Commun. 274, 727–731 (2000)CrossRefGoogle Scholar
  6. H.M. Heise, R. Marbach, T.H. Koschinsky, F.A. Gries, Ann. Occup. Hyg. 18, 439–447 (1994)Google Scholar
  7. S. Iguchi, K. Mitsubayashi, T. Uehara, M. Ogawa, Sens. Actuators, B 108, 733–737 (2005)CrossRefGoogle Scholar
  8. Z. Jin, R. Chen, L.A. Colon, Anal. Chem. 69, 1326–1331 (1997)CrossRefGoogle Scholar
  9. H. Kudo, T. Sawada, E. Kazawa, H. Yoshida, Y. Iwasaki, K. Mitsubayashi, Biosens. Bioelectron. 22, 558–562 (2006)CrossRefGoogle Scholar
  10. S.F.P. Man, G.K. Adams, D.F. Proctor, J. Appl. Physiol.: Respir., Environ. Exercise Physiol. 46, 205–211 (1979)Google Scholar
  11. W.F. March, B. Rabinovitch, R. Adams, J.R. Wise, M. Melton, Trans. Am. Soc. Artif. Intern. Organs 28, 232–235 (1982)Google Scholar
  12. W.F. March, F.E. Smith, P. Herbrechtsmeier, A. Domschke, C. Morris, Diabetes 50 (Suppl.), A125 (2001)Google Scholar
  13. D. Meadows, J.S. Schultz, Talanta 35, 145–150 (1988)CrossRefGoogle Scholar
  14. K. Mitsubayashi, M. Suzuki, E. Tamiya, I. Karube, Anal. Chim. Acta 289, 27–34 (1994)CrossRefGoogle Scholar
  15. B. Rabinovitch, W.F. March, R.L. Adams, Diabetes Care 5, 254–258 (1982)CrossRefGoogle Scholar
  16. M.R. Robinson, R.P. Eaton, D.M. Haaland, G.W. Koepp, E.V. Thomas, B.R. Stallard, P.L. Robinson, Clin. Chem. 38, 1618–1622 (1992)Google Scholar
  17. A. Romano, F. Rolant, Metab. Pediatr. System. Ophthalmol. 11, 78–85 (1988)Google Scholar
  18. G.M. Schier, R.G. Moses, I.E.T. Gan, S.C. Blair, Diabetes Res. Clin. Pract. 4, 177–181 (1988)CrossRefGoogle Scholar
  19. D.K. Sen, G.S. Sarin, Br. J. Ophthalmol. 64, 693–699 (1980)Google Scholar
  20. T.R. Stolwijk, J.A. van Best, H.P.J. Lemkes, R.J.W. Keizer, J.A. Oosterhuis, Int. Opthalmol. 15, 377–381 (1991)CrossRefGoogle Scholar
  21. L. Tolosa, I. Gryczynski, L.R. Eichorn, J.D. Dattelbaum, F.N. Castellano, G. Rao, J.R. Lakowicz, Anal. Biochem. 267, 114–120 (1999)CrossRefGoogle Scholar
  22. L. Tolosa, H. Malak, G. Rao, J.R. Lakowicz, Sens. Actuators, B 45, 93–99 (1997)CrossRefGoogle Scholar
  23. W. Trettnak, O.S. Wolfbeis, Anal. Chim. Acta 221, 195–203 (1989)CrossRefGoogle Scholar
  24. G.S. Wilson, R. Gifford, Biosens. Bioelectron. 20, 2388–2403 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Shigehito Iguchi
    • 1
  • Hiroyuki Kudo
    • 2
  • Takao Saito
    • 2
    • 3
  • Mitsuhiro Ogawa
    • 2
  • Hirokazu Saito
    • 2
  • Kimio Otsuka
    • 2
  • Akio Funakubo
    • 3
  • Kohji Mitsubayashi
    • 2
  1. 1.Graduate School of EngineeringTokai UniversityHiratsukaJapan
  2. 2.Department of Biomedical Devices and InstrumentationInstitute of Biomaterials and Bioengineering, Tokyo Medical and Dental UniversityChiyoda-kuJapan
  3. 3.Department of Electric and Computer EngineeringTokyo Denki UniversityHatoyama-machiJapan

Personalised recommendations