Biomedical Microdevices

, Volume 9, Issue 4, pp 597–602 | Cite as

Matrigel coated polydimethylsiloxane based microfluidic devices for studying metastatic and non-metastatic cancer cell invasion and migration

  • K. C. Chaw
  • M. Manimaran
  • F. E. H. Tay
  • S. Swaminathan


Three-dimensional (3-D) extracellular matrices (ECM) allow complex biochemical and biophysical interactions between cells and matrices. Unlike 2-D systems, 3-D models provide a better representation of the micro and local environments in living tissues for facilitating the physiological study of cell migration. Here, we report a microfluidic device based on polydimethylsiloxane (PDMS) for monitoring 3-D cell migration across ECM-coated microgaps with real-time light microscopy. We tracked the migration of the invasive MDA-MB-231 (mammary carcinoma) cells and mapped out their migration paths. It enabled us to quantify the percentage of migrated cells as well as migration information of individual cells. This wide spectrum of data acquisition is vital for elucidating the migration capabilities of different type of cells and to understand the basic mechanism involved in cancer metastasis.


Microfluidic devices Matrigel coating Extracellular matrices (ECM) Cell migration Cell invasion 



We thank the Biomedical Research Council (BMRC), A*STAR, Singapore for the funding of this work.


  1. A. Albini, Y. Iwamoto, H.K. Kleinman, G.R. Martin, S.A. Aaronson, J.M. Kozlowski et al., Cancer Res. 47, 3239–3245 (1987)Google Scholar
  2. A. Albini, R. Benelli, D.M., Noonan, C. Brigati, Int. J. Dev. Biol. 48, 563–571 (2004)CrossRefGoogle Scholar
  3. D. Artemov, U. Pilatus, S. Chou, N. Mori, J.B. Nelson, Z.M. Bhujwalla, Magn. Reson. Med. 42, 277–282 (1999)CrossRefGoogle Scholar
  4. B.E. Bachmeier, A.G. Nerlich, R. Lichtinghagen, C.P. Sommerhoff, Anticancer Res. 21, 3821–3828 (2001)Google Scholar
  5. J. Banyard, B.R. Zetter, Cancer Metastasis Rev. 17, 449–458 (1998)CrossRefGoogle Scholar
  6. M.D. Bashyam, Cancer 94, 1821–1829 (2002)CrossRefGoogle Scholar
  7. A.J. Bergman, K. Zygourakis, Biomaterials 20, 2235–2244 (1999)CrossRefGoogle Scholar
  8. H. Birkedal-Hansen, Curr. Opin. Cell Biol. 7, 728–735 (1995)CrossRefGoogle Scholar
  9. H. Bryant, E.N. Schultz, H.D. Thomas, K.M. Parker, D. Flower, E. Lopez et al., Nature 434, 913–917 (2005)CrossRefGoogle Scholar
  10. J.L. Charest, M.T., Eliason, A.J. García, W.P. King, Biomaterials 27, 2487–2494 (2006)CrossRefGoogle Scholar
  11. K.C. Chaw, M. Manimaran, E.H. Tay, S. Swaminathan, Microvasc. Res. 72, 153–160 (2006)CrossRefGoogle Scholar
  12. J. Condeelis, J. Jones, J.E. Segall, Cancer Metastasis Rev. 11, 55–68 (1992)CrossRefGoogle Scholar
  13. S.A. DeLong, J.J. Moon, J.L. West, Biomaterials 26, 3227–3234 (2005)CrossRefGoogle Scholar
  14. Z.N. Demou, L.V. McIntire, Cancer Res. 62, 5301–5317 (2002)Google Scholar
  15. M.R., Dusseiller, D. Schlaepfer, M. Koch, R. Kroschewski, M. Textor, Biomaterials 26, 5917–5925, (2005)CrossRefGoogle Scholar
  16. F. Entschladen, T.L. Drell IV, K. Lang, K. Masur, D. Palm, P. Bastian, B. Niggemann, K.S. Zanker, Exp. Cell Res. 307, 418–426 (2005)CrossRefGoogle Scholar
  17. P. Friedl, E.-B. Bröcker, Cell. Mol. Life Sci. 57, 41–64 (2000)CrossRefGoogle Scholar
  18. P. Friedl, P.B. Noble, P.A. Walton, D.W. Laird, P.J. Chauvin, R.J. Tabah, M. Black, K.S. Zanker, Cancer Res. 55, 4557–4560 (1995)Google Scholar
  19. P. Friedl, K. Maaser, C.E. Klein, B. Niggemann, G. Krohne, K.S. Zanker, Cancer Res. 57, 2061–2070 (1997)Google Scholar
  20. M.M. Hijazi, E.W. Thompson, C. Tang, P. Coopman, J.A. Torri, D. Yang, S.C. Mueller, R. Lupu, Int. J. Oncol. 17, 629–641 (2000)Google Scholar
  21. K. Horino, A.L. Kindezelskii, V.M. Elner, B.A. Hughes, H.R. Petty, FASEB J. 15, 932–939 (2001)CrossRefGoogle Scholar
  22. P. Kedeshian, M.D. Sternlicht, M. Nguyen, Z.M. Shao, S.H. Barsky, Cancer Lett. 123, 215–226 (1998)CrossRefGoogle Scholar
  23. Y. Lee, L.V. McIntire, K. Zygourakis, Biotechnol. Bioeng. 43, 622–634 (1994)CrossRefGoogle Scholar
  24. M.P. Lutolf, J.L. Lauer-Fields, H.G. Schmoekel, A.T. Metters, F.E. Weber, G.B. Fields et al., PNAS 100, 5413–5418 (2003)CrossRefGoogle Scholar
  25. U. Pilatus, E. Ackerstaff, D. Artemov, N. Mori, R.J. Gillies, Z.M. Bhujwalla, Neoplasia 2, 273–279 (2000)CrossRefGoogle Scholar
  26. M. Schindler, J. Ahmed, J. Kamal, A. Nur-E-Kamal, T.H. Grafe, H. Young Chung, S. Meiners, Biomaterials 26, 5624–5631 (2005)CrossRefGoogle Scholar
  27. S.L. Schor, A.M. Schor, B. Winn, G. Rushton, Int. J. Cancer. 29, 57–62 (1982)CrossRefGoogle Scholar
  28. D.I. Shreiber, V.H. Barocas, R.T. Tranquilo, Biophys J. 84, 4102–4114 (2003)CrossRefGoogle Scholar
  29. Y. Torisawaa, H. Shikua, T. Yasukawaa, M. Nishizawab, T. Matsue, Biomaterials 26, 2165–2172 (2005)CrossRefGoogle Scholar
  30. K. Wolf, I. Mazo, H. Leung, K. Engelke, U.H. von Andrian, E.I. Deryugina, et al., J. Cell Biol. 160, 267–277 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • K. C. Chaw
    • 1
  • M. Manimaran
    • 2
  • F. E. H. Tay
    • 3
  • S. Swaminathan
    • 4
  1. 1.NUS Graduate School for Integrative Sciences and EngineeringSingaporeSingapore
  2. 2.Institute of Medical Biology (IMB)SingaporeSingapore
  3. 3.Department of Mechanical EngineeringSingaporeSingapore
  4. 4.Oncology Research Institute and Department of PhysiologyNUSSingaporeSingapore

Personalised recommendations