Biomedical Microdevices

, Volume 9, Issue 4, pp 555–563 | Cite as

Fabrication of UV epoxy resin masters for the replication of PDMS-based microchips



This paper presents two methods for the fabrication of UV epoxy resin masters for the replication of PDMS-based microfluidic chips. In the first method, the epoxy resin master is fabricated from a negative glass template manufactured using conventional lithography and wet etching techniques. However, in the second method, the master is produced simply by exposing a layer of UV epoxy resin coated on a glass substrate. Although the first method enables the replication of multiple PDMS structures from a single master, the latter method avoids the requirement for a wet chemical etching process and enables the epoxy master to be produced in 40 min or less. The experimental results show that the epoxy resin masters enable the mass production of PDMS replicas with highly precise geometrical tolerances. A series of electrokinetic focusing experiments are performed using PDMS microchips replicated from the current epoxy resin masters. The experimental results obtained for the width of the electrokinetically-focused sample stream under different focusing ratios are found to be in good agreement with the theoretical predictions. The sample handling characteristics of the microfluidic chips are also investigated. It is shown that the sample flow can be electrokinetically pre-focused into a narrow stream and then guided to the desired outlet port by applying a simple voltage control model. Finally, it is demonstrated that through an appropriate alignment of the sample flow and the conductivity gradient, the electrokinetic instability phenomenon can be induced at a relatively low electrical field strength of 0.35 kV/cm.


UV epoxy resin Microfluidics Poly(dimethylsiloxane) Electroosmotic flow 



The authors gratefully acknowledge the financial support provided to this study by the National Science Council of Taiwan under Grant No. NSC-95-2221-E-006-253 and by the National Nano Device Laboratory of Taiwan under Grant No. NDL-95S-C-053.


  1. M.K. Chaudhury, G.M. Whitesides, Langmuir 7, 1013 (1991)CrossRefGoogle Scholar
  2. L.M. Fu, R.J. Yang, G.B. Lee, Y.J. Pan, Electrophoresis 24, 3026 (2003)CrossRefGoogle Scholar
  3. L.M. Fu, R.J. Yang, C.H. Lin, Y.J. Pan, G.B. Lee, Anal. Chim. Acta. 507, 163 (2004)CrossRefGoogle Scholar
  4. C. Fütterer, N. Minc, V. Bormuth, J.H. Codarbox, P. Laval, J. Rossier, J.L. Viovy, Lab. Chip. 4, 351 (2004)CrossRefGoogle Scholar
  5. P. Grodzinski, R.H. Liu, B. Chen, J. Blackwell, Y. Liu, D. Rhine, T. Smekal, D. Ganser, C. Romero, H. Yu, T. Chan, N. Kroutchinina, Biomed. Microd. 3, 275 (2001)CrossRefGoogle Scholar
  6. J.W. Hong, T. Fuji, M. Seki, T. Yamamoto, I. Endo, Electrophoresis 22, 328 (2001)CrossRefGoogle Scholar
  7. V.V. Kancharla, S. Chen, Biomed. Microdev. 4, 105 (2002)CrossRefGoogle Scholar
  8. C.H. Lin, G.B. Lee, Y.H. Lin, C.H. Chang, J. Micromechanics Microengineering 11, 726 (2001)CrossRefGoogle Scholar
  9. R.M. McCormick, R.J. Nelson, G.M. A.-Amigo, D.J. Benvegnu, H.H. Hooper, Anal. Chem. 69, 2626 (1997)CrossRefGoogle Scholar
  10. N.T. Nguyen, X. Huang, Biomed. Microdev. 8, 133 (2006)CrossRefGoogle Scholar
  11. M.H. Oddy, J.G. Santiago, J.C. Mikkelsen, Anal. Chem. 73, 5822 (2001)CrossRefGoogle Scholar
  12. Y.J. Pan, R.J. Yang, J. Micromechanics Microengineering 16, 2666 (2006)CrossRefGoogle Scholar
  13. Y.J. Pan, J.J. Lin, W.J. Luo, R.J Yang, Biosens. Bioelectron. 21, 1644 (2006)CrossRefGoogle Scholar
  14. A.P. Russo, D. Apoga, N. Dowell, W. Shain, A.M.P. Turner, H.G. Craighead, H.C. Hoch, J.N. Turner, Biomed. Microdev. 4, 277 (2002)CrossRefGoogle Scholar
  15. V. Saarela, S. Franssila, S. Tuomikoski, S. Marttila, P. Östman, T. Sikanen, T. Kotiaho, R. Kostiainen, Sens. Actuators, B 114, 552 (2006)CrossRefGoogle Scholar
  16. T. Stiles, R. Fallon, T. Vestad, J. Oakey, D.W.M. Marr, J. Squier, R Jimenez, Microfluid. Nanofluid. 1, 280 (2005)CrossRefGoogle Scholar
  17. Y.C. Tan, V. Cristini, A.P. Lee, Sens. Actuators, B 114, 350 (2006)CrossRefGoogle Scholar
  18. G. Tresset, S. Takeuchi, Biomed. Microdev. 6, 213 (2004)CrossRefGoogle Scholar
  19. Z. Wu, N.T. Nguyen, Biomed. Microdev. 7, 13 (2005)CrossRefGoogle Scholar
  20. C. Yamahata, C. Lotto, E. Al-Assaf, M.A.M. Gijs, Microfluid. Nanofluid. 1, 197 (2005)CrossRefGoogle Scholar
  21. R.J. Yang, C.C. Chang, S.B. Huang, G.B. Lee, J. Micromechanics Microengineering 15, 2141 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Engineering ScienceNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations