Advertisement

Biomedical Microdevices

, Volume 9, Issue 3, pp 413–419 | Cite as

Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip

  • Rudi Irawan
  • Swee Chuan Tjin
  • Xiaoqin Fang
  • Chit Yaw Fu
Article

Abstract

A combination of fluorescence detection and microfluidic technology provides promising applications in life sciences. A prototype of an integrated fluorescence detection system and optical fiber light guide on a laminate-based multichannel microfluidic chip has been developed and tested. A blue LED, plastic optical fiber, photodiode, Mylar and PMMA, and fluorescein and BSA-FITC were used as an excitation source, light coupler and guide, detector, microfluidic substrate and sample, respectively. The results show that the system is capable of detecting weak fluorescence emission from a fluorescein solution at concentration down to 0.01 ng/ml, and gives linear response. The results were also reproducible, and no cross-talk between adjacent channels was observed. The test using BSA as a model analyte demonstrates its feasibility for on-chip immunosensor applications. The performance and applications can be developed further. This prototype can be used as a platform to develop a simple and compact bio-fluorescence detection system integrated with an inexpensive and disposable multichannel microfluidic chip for biomedical devices.

Keywords

Fluorescence detection system Disposable microfluidic chip Plastic optical fiber 

Notes

Acknowledgment

This project is funded by A*STAR/Biomedical Research Council of Singapore under the Singapore-University of Washington Alliance Programme.

References

  1. H.M.E. Azzazy, R.H. Christenson, Clin. Biochem. 35, 13 (2002)CrossRefGoogle Scholar
  2. J.Y. Cheng, C.W. Wei, K.H. Hsu, T.H. Young, Sens. Actuators B 99, 186 (2004)CrossRefGoogle Scholar
  3. T. Chovan, A. Guttman, Trends Biotechnol. 20, 116 (2002)CrossRefGoogle Scholar
  4. H. Craighead, Nature 442, 387 (2006)CrossRefGoogle Scholar
  5. R. Daw, and J. Finkelstein, Nature 442, 367 (2006)CrossRefGoogle Scholar
  6. A.J. deMello, Nature 442, 394 (2006)CrossRefGoogle Scholar
  7. K.R. Diamond, M.S. Patterson, T.J. Farrell, Appl. Opt. 42, 2436 (2003)Google Scholar
  8. J. El-Ali, P. K. Sorger, K.F. Jensen, Nature 442, 403 (2006)CrossRefGoogle Scholar
  9. E. Eteshola, M. Balberg, Biomed. Microdevices 6(1), 7 (2004)CrossRefGoogle Scholar
  10. P. Grodzinski, R.H. Liu, B. Chen, J. Blackwell, Y. Liu, D. Rhine, T. Smekal, D. Ganser, C. Romero, H. Yu, T. Chan, Kroutchinina, Biomed. Microdevices 3(4), 275 (2001)CrossRefGoogle Scholar
  11. G. Grunwaldt, S. Haebel, C. Spitz, M. Steup, R. Menzel, J. Photochem. Photobiol., B Biol. 67, 177 (2002)CrossRefGoogle Scholar
  12. R. Irawan, S. C. Tjin, P. Yager, D. Zhang, Biomed. Microdevices 7(3), 205 (2005)CrossRefGoogle Scholar
  13. D. Janasek, J. Franzke, A. Manz, Nature 442, 374 (2006)CrossRefGoogle Scholar
  14. T. Kamei, N.M. Toriello, E.T. Lagally, R.G. Blazej, J.R. Scherer, R.A. Street, R.A. Mathies, Biomed. Microdevices 7(2), 147 (2005)CrossRefGoogle Scholar
  15. J. Kameoka, H.G. Craighead, H. Zhang, J. Henion, Anal. Chem. 73, 1935 (2001)CrossRefGoogle Scholar
  16. R.H. Kenneth, Y. Paul, Lab Chip 3, 248 (2003)CrossRefGoogle Scholar
  17. J. Khandurina, A. Guttman, J. Chromatogr. 943, 159 (2002)CrossRefGoogle Scholar
  18. H. Kido, A. Maquieira, B.D. Hammock, Anal. Chim. Acta 411, 1 (2000)CrossRefGoogle Scholar
  19. H. Klank, J.P. Kutter, Geschke, Lab Chip 2, 242 (2002)CrossRefGoogle Scholar
  20. L.J. Kricka, Clin. Chim. Acta 307, 219 (2001)CrossRefGoogle Scholar
  21. J.R. Lakowics, Principles of Fluorescence Spectroscopy (Kluwer, New York, 1999)Google Scholar
  22. J.N. Lee, C. Park, G.M. Whitesides, Anal. Chem. 75, 6544 (2003)CrossRefGoogle Scholar
  23. H.-F. Li, J.-M. Lin, R.-G., Su, K. Uchiyama, T. Habo, Electrophoresis 25, 1907 (2004)CrossRefGoogle Scholar
  24. F.S. Ligler, J.S. Erickson, Nature 440, 159 (2006)CrossRefGoogle Scholar
  25. K. Miyaki, Y. Guo, T. Shimosaka, T. Nakagama, H. Nakajima, K. Uchiyama, Anal. Bioanal. Chem. 382, 810 (2005)CrossRefGoogle Scholar
  26. P.N. Prasad, Introduction to Biophotonics (Wiley, New Jersey, 2003)Google Scholar
  27. D. Psaltis, S.R. Quake, C. Yang, Nature 442, 381 (2006)CrossRefGoogle Scholar
  28. K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto, T. Kitamori, Adv. Drug Deliv. Rev. 55, 379 (2003)CrossRefGoogle Scholar
  29. T.H. Schulte, R.L. Bardell, B.H. Weigl, Clin. Chim. Acta 321, 1 (2002)CrossRefGoogle Scholar
  30. A.J. Tudos, G.A.J. Besselink, R.B.M. Schasfoort, Lab Chip 1, 83 (2001)CrossRefGoogle Scholar
  31. F. Vinet, P. Chaton, Y. Fouillet, Microelectron. Eng. 61–62, 41 (2002)CrossRefGoogle Scholar
  32. R. Weersink, M.S. Patterson, K. Diamond, S. Silver, N. Padgett, Appl. Opt. 40, 6389 (2001)Google Scholar
  33. B.H. Weigl, R.L. Bardell, T. Schulte, F. Battrell, J. Hayenga, Biomed. Microdevices 3(4), 267 (2001)CrossRefGoogle Scholar
  34. B.H. Weigl, R.L. Bardell, C.R. Cabrera, Adv. Drug Deliv. Rev. 55, 349 (2003)CrossRefGoogle Scholar
  35. B.H. Weigl, J. Gerdes, P. Tarr, P. Yager, L. Dillman, P. Peck, S. Ramachandran, M. Lemba, M. Kokoris, M. Nabavi, F. Battrell, D. Hoekstra, E.J. Klein, D.M. Denno, Proc. SPIE 6112, 611201–611202 (2006)Google Scholar
  36. G.M. Whitesides, Nature 442, 368 (2006)CrossRefGoogle Scholar
  37. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Nature 442, 412 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rudi Irawan
    • 1
    • 3
  • Swee Chuan Tjin
    • 2
  • Xiaoqin Fang
    • 1
  • Chit Yaw Fu
    • 1
  1. 1.BioMedical Engineering Research CentreNanyang Technological UniversitySingaporeSingapore
  2. 2.Photonics Research Centre, School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Department of PhysicsUniversity of LampungBandar LampungIndonesia

Personalised recommendations