Biomedical Microdevices

, Volume 9, Issue 6, pp 923–938 | Cite as

Implantable microscale neural interfaces

  • Karen C. Cheung


Implantable neural microsystems provide an interface to the nervous system, giving cellular resolution to physiological processes unattainable today with non-invasive methods. Such implantable microelectrode arrays are being developed to simultaneously sample signals at many points in the tissue, providing insight into processes such as movement control, memory formation, and perception. These electrode arrays have been microfabricated on a variety of substrates, including silicon, using both surface and bulk micromachining techniques, and more recently, polymers. Current approaches to achieving a stable long-term tissue interface focus on engineering the surface properties of the implant, including coatings that discourage protein adsorption or release bioactive molecules. The implementation of a wireless interface requires consideration of the necessary data flow, amplification, signal processing, and packaging. In future, the realization of a fully implantable neural microsystem will contribute to both diagnostic and therapeutic applications, such as a neuroprosthetic interface to restore motor functions in paralyzed patients.


BioMEMS Microelectrode array Neural probe Neural prosthesis 


  1. R.A. Andersen, J.W. Burdick, S. Musallam, B. Pesaran, and J.G. Cham, Trends in Cognitive Sciences 8, 486–493 (2004).CrossRefGoogle Scholar
  2. A.N. Badi, T.R. Kertesz, R.K. Gurgel, C. Shelton, and R.A. Normann, The Laryngoscope 113, 833–842 (2003).CrossRefGoogle Scholar
  3. Q. Bai and K.D. Wise, IEEE Transactions on Biomedical Engineering 48, 911–920 (2001).CrossRefGoogle Scholar
  4. J.P. Bearinger, S. Terrettaz, R. Michel, N. Tirelli, H. Vogel, M. Textor, and J.A. Hubbell, Nature Materials 2, 259–264 (2003).CrossRefGoogle Scholar
  5. R. Biran, D.C. Martin, and P.A. Tresco, Experimental Neurology 195, 115–126 (2005).CrossRefGoogle Scholar
  6. N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kubler, J. Perelmouter, E. Taub, and H. Flor, Nature 398, 297–298 (1999).CrossRefGoogle Scholar
  7. T.J. Blanche, M.A. Spacek, J.F. Hetke, and N.V. Swindale, Journal of Neurophysiology 93, 2987–3000 (2005).CrossRefGoogle Scholar
  8. A. Branner, R.B. Stein, E. Fernandez, Y. Aoyagi, and R.A. Normann, IEEE Transactions on Biomedical Engineering 51, 146–157 (2004).CrossRefGoogle Scholar
  9. S. Breit, J.B. Schulz, and A.-L. Benabid, Cell Tissue Research 318, 275–288 (2004).CrossRefGoogle Scholar
  10. J.J. Burmeister, K. Moxon, and G.A. Gerhardt, Anal. Chem. 72, 187–192 (2000).CrossRefGoogle Scholar
  11. G. Buzsaki, Nature Neuroscience 7, 446–451 (2004).CrossRefGoogle Scholar
  12. P.K. Campbell, K.E. Jones, R.J. Huber, K.W. Horch, and R.A. Normann, IEEE Transactions on Biomedical Engineering 38, 758–768 (1991).CrossRefGoogle Scholar
  13. J.K. Chapin, Nature Neuroscience 7, 452–455 (2004).CrossRefGoogle Scholar
  14. J. Chen, K.D. Wise, J.F. Hetke, and S.C. Bledsoe, Jr., IEEE Transactions on Biomedical Engineering 44, 760–769 (1997).CrossRefGoogle Scholar
  15. K.C. Cheung, K. Djupsund, Y. Dan, and L.P. Lee, Journal of Microelectromechanical Systems 12, 179–184 (2003).CrossRefGoogle Scholar
  16. K.C. Cheung, G. Lee, K. Djupsund, Y. Dan, and L.P. Lee, A new neural probe using SOI wafers with topological interlocking mechanisms. 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. (Lyon, France, 2000).Google Scholar
  17. K.C. Cheung, P. Renaud, H. Tanila, and K. Djupsund, Biosensors and Bioelectronics (2006) in press.Google Scholar
  18. K.C. Cheung, Y. Zhong, P. Renaud, and R. Bellamkonda, Comparison of tissue reaction to implanted polyimide and silicon microelectrode arrays. Biosurf VI - Tissue-Surface Interaction. (Lausanne, Switzerland, 2005).Google Scholar
  19. J. Csicsvari, D.A. Henze, B. Jamieson, K.D. Harris, A. Sirota, P. Bartho, K.D. Wise, and G. Buzsaki, Journal of Neurophysiology 90, 1314–1323 (2003).CrossRefGoogle Scholar
  20. B.K. Day, F. Pomerleau, J.J. Burmeister, P. Huettl, and G.A. Gerhardt, Journal of Neurochemistry 96, 1626–1635 (2006).CrossRefGoogle Scholar
  21. J.P. Donoghue, Nature Neuroscience 5, 1085–1088 (2002).CrossRefGoogle Scholar
  22. K.L. Drake, K.D. Wise, J. Farraye, D.J. Anderson, and S.L. Bement, IEEE Transactions on Biomedical Engineering 35, 719–732 (1988).CrossRefGoogle Scholar
  23. D.J. Edell, V.V. Toi, V.M. McNeil, and L.D. Clark, IEEE Transactions on Biomedical Engineering 39, 635–643 (1992).CrossRefGoogle Scholar
  24. G. Ehteshami, A. Singh, G. Coryell, S. Massia, J. He, and G. Raupp, Journal of Biomaterials Science, Polymer Edition 14, 1105–1116 (2003).CrossRefGoogle Scholar
  25. A.K. Engel, C.K.E. Moll, I. Fried, and G.A. Ojemann, Nature Reviews Neuroscience 6, 35–47 (2005).CrossRefGoogle Scholar
  26. J.W. Fawcett and R.A. Asher, Brain Research Bulletin 49, 377–391 (1999).CrossRefGoogle Scholar
  27. Y. Hanein, K.F. Böhringer, R.C. Wyeth, and A.O.D. Willows, Sensors Update 10, 1–29 (2002).CrossRefGoogle Scholar
  28. Y. Hanein, C.G.J. Schabmueller, G. Holman, P. Lücke, D.D. Denton, and K.F. Böhringer, Journal of Micromechanics and Microengineering 13, S91 (2003).CrossRefGoogle Scholar
  29. W. He and R.V. Bellamkonda, Biomaterials 26, 2983–2990 (2005).CrossRefGoogle Scholar
  30. J.F. Hetke, J.C. Williams, D.S. Pellinen, R.J. Vetter, and D.R. Kipke, 3-D silicon probe array with hybrid polymer interconnect for chronic cortical recording. First International IEEE EMBS Conference on Neural Engineering. (Capri Island, Italy, 2003).Google Scholar
  31. M. Heuberger, T. Drobek, and N.D. Spencer, Biophysical Journal 88, 495–504 (2005).CrossRefGoogle Scholar
  32. K.W. Horch and G. Dhillon (eds.), Neuroprosthetics: Theory and Practice, River Edge, NJ, World Scientific Publishing Company (2004).Google Scholar
  33. D.T. Kewley, M.D. Hills, D.A. Borkholder, I.E. Opris, N.I. Maluf, C.W. Storment, J.M. Bower, and G.T.A. Kovacs, Sensors Actuators A: Physical 58, 27–35 (1997).CrossRefGoogle Scholar
  34. M. Kindlundh, P. Norlin, and U.G. Hofmann, Sensors and Actuators B: Chemical 102, 51–58 (2004).CrossRefGoogle Scholar
  35. D.R. Kipke, International Symposium on Circuits and Systems, ISCAS (2004).Google Scholar
  36. B.A. Koeneman, K.-K. Lee, A. Singh, J. He, G.B. Raupp, A. Panitch, and D.G. Capco, Journal of Neuroscience Methods 137, 257–263 (2004).CrossRefGoogle Scholar
  37. G. Kotzar, M. Freas, P. Abel, A. Fleischman, S. Roy, C. Zorman, J.M. Moran, and J. Melzak, Biomaterials 23, 2737–2750 (2002).CrossRefGoogle Scholar
  38. G.T.A. Kovacs, Introduction to the theory, design, and modeling of thin-film microelectrodes for neural interfaces. In D.A. Stenger and T.M. McKenna (Eds.), Enabling Technologies for Cultured Neural Networks. (Academic Press, 1994).Google Scholar
  39. G.T.A. Kovacs, C.W. Storment, and J.M. Rosen, IEEE Transactions on Biomedical Engineering 39, 893–902 (1992).CrossRefGoogle Scholar
  40. K. Lee, J. He, R. Clement, S. Massia, and B. Kim, Biosensors and Bioelectronics 20, 404–407 (2004).CrossRefGoogle Scholar
  41. E.C. Leuthardt, G. Schalk, J.R. Wolpaw, J.G. Ojemann, and D.W. Moran, Journal of Neural Engineering 63–71 (2004).Google Scholar
  42. R.T. Liggins and H.M. Burt, Advanced Drug Delivery Reviews 54, 191–202 (2002).CrossRefGoogle Scholar
  43. X. Liu, D.B. McCreery, R.R. Carter, L.A. Bullara, T.G.H. Yuen, and W.F. Agnew, IEEE Transactions on Rehabilitation Engineering 7, 315–326 (1999).CrossRefGoogle Scholar
  44. K.A. Ludwig, J.D. Uram, J. Yang, D.C. Martin, and D.R. Kipke, Journal of Neural Engineering 3, 59–70 (2006).CrossRefGoogle Scholar
  45. M. Maher, J. Pine, J. Wright, and Y.-C. Tai, Journal of Neuroscience Methods 87, 45–56 (1999).CrossRefGoogle Scholar
  46. C.A. Marrese, Analytical Chemistry 59, 217–218 (1987).CrossRefGoogle Scholar
  47. S. Metz, A. Bertsch, D. Bertrand, and P. Renaud, Biosensors and Bioelectronics 19, 1309–1318 (2004a).CrossRefGoogle Scholar
  48. S. Metz, A. Bertsch, and P. Renaud, Journal of Microelectromechanical Systems 14, 383–391 (2005).CrossRefGoogle Scholar
  49. S. Metz, R. Holzer, and P. Renaud, Lab on a Chip 1, 29–34 (2001).CrossRefGoogle Scholar
  50. S. Metz, S. Jiguet, A. Bertsch, and P. Renaud, Lab on a Chip 4, 114–120 (2004b).CrossRefGoogle Scholar
  51. S. Metz, C. Trautmann, A. Bertsch, and P. Renaud, Journal of Micromechanics and Microengineering 14, 324–331 (2004c).CrossRefGoogle Scholar
  52. D. Missirlis, N. Tirelli, and J.A. Hubbell, Langmuir 21, 2605–2613 (2005).CrossRefGoogle Scholar
  53. H.G. Mond and D. Grenz, Pacing and Clinical Electrophysiology 27, 887–893 (2004).CrossRefGoogle Scholar
  54. H. Mond and K. Stokes, Pacing and Clinical Electrophysiology 15, 95–107 (1992).CrossRefGoogle Scholar
  55. P.S. Motta and J.W. Judy, IEEE Transactions on Biomedical Engineering 52, 923–933 (2005).CrossRefGoogle Scholar
  56. K.A. Moxon, N.M. Kalkhoran, M. Markert, M.A. Sambito, J.L. McKenzie, and J.T. Webster, IEEE Transactions on Biomedical Engineering 51, 881–889 (2004).CrossRefGoogle Scholar
  57. K. Najafi and J.F. Hetke, IEEE Transactions on Biomedical Engineering 37, 474–481 (1990).CrossRefGoogle Scholar
  58. K. Najafi, J. Ji, and K.D. Wise, IEEE Transactions on Biomedical Engineering 37, 1–11 (1990).CrossRefGoogle Scholar
  59. M.A.L. Nicolelis, Nature 409, 403–407 (2001).CrossRefGoogle Scholar
  60. M.A.L. Nicolelis, Nature Reviews Neuroscience 4, 417–422 (2003).CrossRefGoogle Scholar
  61. M.A.L. Nicolelis and J.K. Chapin, Scientific American 287, 46–53 (2002).CrossRefGoogle Scholar
  62. M.A.L. Nicolelis, D. Dimitrov, J.M. Carmena, R. Crist, G. Lehew, J.D. Kralik, and S.P. Wise, PNAS 100, 11041–11046 (2003).CrossRefGoogle Scholar
  63. P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, and U.G. Hofmann, Journal of Micromechanics and Microengineering 12, 414 (2002).CrossRefGoogle Scholar
  64. R.A. Normann, P.K. Campbell, and K.E. Jones, Three-dimensional electrode device. In U.S.P.A.T. Office, (Ed.) United States, The University of Utah (1993).Google Scholar
  65. W.T. Norton, D.A. Aquino, I. Hozumi, F.-C. Chiu, and C.F. Brosnan, Neurochemical Research (Historical Archive) 17, 877–885 (1992).CrossRefGoogle Scholar
  66. V.S. Polikov, P.A. Tresco, and W.M. Reichert, Journal of Neuroscience Methods 148, 1–18 (2005).CrossRefGoogle Scholar
  67. F. Pomerleau, B.K. Day, P. Huettl, J.J. Burmeister, and G.A. Gerhardt, Annals of the New York Academy of Sciences 1003, 454–457 (2003).CrossRefGoogle Scholar
  68. S.T. Retterer, K.L. Smith, C.S. Bjornsson, K.B. Neeves, A.J.H. Spence, J.N. Turner, W. Shain, and M.S. Isaacson, IEEE Transactions on Biomedical Engineering 51, 2063–2073 (2004).CrossRefGoogle Scholar
  69. J. Richardson, R.R., J.A. Miller, and W.M. Reichert, Biomaterials 14, 627–635 (1993).CrossRefGoogle Scholar
  70. F.J. Rodriguez, D. Ceballos, M. Schuttler, A. Valero, E. Valderrama, T. Stieglitz, and X. Navarro, Journal of Neuroscience Methods 98, 105–118 (2000).CrossRefGoogle Scholar
  71. P.J. Rousche, D.S. Pellinen, D.P. Pivin, Jr., J.C. Williams, R.J. Vetter, and D.R. Kirke, IEEE Transactions on Biomedical Engineering 48, 361–371 (2001).CrossRefGoogle Scholar
  72. P.J. Rousche and R.A. Normann, IEEE Transactions on Neural Systems and Rehabilitation Engineering 7, 56–68 (1999).CrossRefGoogle Scholar
  73. S. Schmidt, K. Horch, and R. Normann, Journal of Biomedical Materials Research 27, 1393–1399 (1993).CrossRefGoogle Scholar
  74. E.M. Schmidt, J.S. McIntosh, and M.J. Bak, Medical & Biological Engineering & Computing 26, 96–101 (1988).CrossRefGoogle Scholar
  75. E.M. Schmidt, M.J. Bak, and P. Christensen, Journal of Neuroscience Methods 62, 89–92 (1995).CrossRefGoogle Scholar
  76. M. Schuettler, S. Stiess, B.V. King, and G.J. Suaning, Journal of Neural Engineering 2, S121 (2005).CrossRefGoogle Scholar
  77. A.B. Schwartz, Annual Review of Neuroscience 27, 487–507 (2004).CrossRefGoogle Scholar
  78. W. Shain, L. Spataro, J. Dilgen, K. Haverstick, S. Retterer, M. Isaacson, M. Saltzman, and J.N. Turner, IEEE Transactions on Neural Systems and Rehabilitation Engineering 11, 186–188 (2003).CrossRefGoogle Scholar
  79. L. Spataro, J. Dilgen, S. Retterer, A.J. Spence, M. Isaacson, J.N. Turner, and W. Shain, Experimental Neurology 194, 289–300 (2005).CrossRefGoogle Scholar
  80. S.S. Stensaas and L.J. Stensaas, Acta Neuropathologica 35, 187–203 (1976).Google Scholar
  81. T. Stieglitz, Electrode materials for recording and stimulation. In K.W. Horch and G.S. Dhillon (Eds.) Neuroprosthetics—Theory and Practice. (World Scientific, 2004).Google Scholar
  82. T. Stieglitz, Sensors and Actuators A: Physical 90, 203–211 (2001).CrossRefGoogle Scholar
  83. T. Stieglitz, H. Beutel, and J.-U. Meyer, Sensors and Actuators A: Physical 60, 240–243 (1997).CrossRefGoogle Scholar
  84. T. Stieglitz, H. Beutel, M. Schuettler, and J.-U. Meyer, Biomedical Microdevices 2, 283–294 (2000).CrossRefGoogle Scholar
  85. T. Stieglitz, M. Schuettler, and K.P. Koch, IEEE Engineering in Medicine and Biology Magazine 24, 58–65 (2005).CrossRefGoogle Scholar
  86. F. Strumwasser, Science 127, 469–470 (1958).CrossRefGoogle Scholar
  87. J. Subbaroyan, D.C. Martin, and D.R. Kipke, Journal of Neural Engineering 2, 103 (2005).CrossRefGoogle Scholar
  88. S. Suner, M.R. Fellows, C. Vargas-Irwin, G.K. Nakata, and J.P. Donoghue, IEEE Transaction on Neural Systems Rehabilitation Engineering 13, 524–541 (2005).CrossRefGoogle Scholar
  89. D.H. Szarowski, M.D. Andersen, S. Retterer, A.J. Spence, M. Isaacson, H.G. Craighead, J.N. Turner, and W. Shain, Brain Research 983, 23–35 (2003).CrossRefGoogle Scholar
  90. S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, and T. Suzuki, Lab on a Chip 5, 519–523 (2005).CrossRefGoogle Scholar
  91. S. Tatic-Lucic, J.A. Wright, Y.-C. Tai, and J. Pine, Sensors and Actuators B: Chemical 43, 105–109 (1997).CrossRefGoogle Scholar
  92. D.M. Taylor, S.I.H. Tillery, and A.B. Schwartz, Science 296, 1829–1832 (2002).CrossRefGoogle Scholar
  93. G. Townsend, P. Peloquin, F. Kloosterman, J.F. Hetke, and L.S. Leung, Brain Research Protocols 9, 122–129 (2002).CrossRefGoogle Scholar
  94. J.N. Turner, W. Shain, D.H. Szarowski, M. Andersen, S. Martins, M. Isaacson, and H. Craighead, Experimental Neurology 156, 33–49 (1999).CrossRefGoogle Scholar
  95. K. Walsh, J. Norville, and Y.-C. Tai, Photoresist as a sacrificial layer by dissolution in acetone. The 14th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2001. (Interlaken, Switzerland, 2001).Google Scholar
  96. K.D. Wise, IEEE Engineering in Medicine and Biology Magazine 24, 22–29 (2005).CrossRefGoogle Scholar
  97. K.D. Wise, D.J. Anderson, J.F. Hetke, D.R. Kipke, and K. Najafi, Proceeding of the IEEE 92, 76–97 (2004).CrossRefGoogle Scholar
  98. K.D. Wise and J.B. Angell, IEEE Transactions on Biomedical Engineering BME-22, 212–219 (1975).CrossRefGoogle Scholar
  99. K.D. Wise, J.B. Angell, and A. Starr, IEEE Transactions on Biomedical Engineering BME-17, 238–247 (1970).Google Scholar
  100. J.R. Wolpaw and D.J. McFarland, PNAS 0403504101 (2004).Google Scholar
  101. Y. Zhong and R.V. Bellamkonda, Journal of Controlled Release 106, 309–318 (2005).CrossRefGoogle Scholar
  102. Y. Zhong, G.C. McConnell, J.D. Ross, S.P. Deweerth, and R.V. Bellamkonda, A novel dexamethasone-releasing, anti-inflammatory coating for neural implants. 2nd International IEEE EMBS Conference on Neural Engineering (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Electrical & Computer EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations