Abstract
The kinesin-microtubule system has emerged as a versatile model system for biologically-derived microscale transport. While kinesin motors in cells transport cargo along static microtubule tracks, for in vitro transport applications it is preferable to invert the system and transport cargo-functionalized microtubules along immobilized kinesin motors. However, for efficient cargo transport and to enable this novel transport system to be interfaced with traditional microfluidics, it is important to fabricate enclosed microchannels that are compatible with kinesin motors and microtubules, that enable fluorescence imaging of microtubule movement, and that provide fluidic connections for sample introduction. Here we construct a three-tier hierarchical system of microfluidic channels that links microscale transport channels to macroscopic fluid connections. Shallow microchannels (5 μm wide and 1 μm deep) are etched in a glass substrate and bonded to a cover glass using PMMA as an adhesive, while intermediate channels (∼100 μm wide) serve as reservoirs and connect to 250 μm deep microchannels that hold fine gauge tubing for fluid injection. To demonstrate the utility of this device, we first show the performance of a directional rectifier that redirects 96% of moving microtubules and, because any microtubules that detach rapidly rebind to the motor-coated surface, suffers no microtubule loss over time. Second, we develop an approach, using a headless kinesin construct, to eliminate gradients in motor adsorption and microtubule binding in the enclosed channels, which enables precise control of kinesin density in the microchannels. Finally, we show that a 60 μm diameter circular ring functionalized with motors concentrates and aligns bundles of ∼3000 uniformly oriented microtubules, while suffering negligible ATP depletion. These aligned isopolar microtubules are an important tool for microscale transport applications and can be employed as a model in vitro system for studying kinesin-driven microtubule organization in cells.
This is a preview of subscription content, access via your institution.







References
D.C.S. Bien, P.V. Rainey, S.J.N. Mitchell, and H.S. Gamble, J. Micromech. Microeng. 13, S34 (2003).
B. Bilenberg, T. Nielsen, B. Clausen, and A. Kristensen, J. Micromech. Microeng. 14, 814 (2004).
T.B. Brown and W.O. Hancock, Nano Lett. 2, 1131 (2002).
C. Brunner, K.H. Ernst, H. Hess, and V. Vogel, Nanotechnology 15, S540 (2004).
M.Q. Bu, T. Melvin, G.J. Ensell, J.S. Wilkinson, and A.G.R. Evans, Sensors and Actuators A-Physical 115, 476 (2004).
L.J. Cheng, M.T. Kao, E. Meyhöfer, and J. Guo, Small 1, 409 (2005).
J. Clemmens, H. Hess, R. Doot, C.M. Matzke, G.D. Bachand, and V. Vogel, Lab. Chip. 4, 83 (2004).
J. Clemmens, H. Hess, R. Lipscomb, Y. Hanein, K. Bohringer, C. Matzke, G. Bachand, B. Bunker, and V. Vogel, Langmuir 19, 10967 (2003).
D.L. Coy, M. Wagenbach, and J. Howard, J. Biol. Chem. 274, 3667 (1999).
S. Farrens, V. Dragoi, R. Pelzer, M. Wimplinger, and P. Lindner, 207th Meeting of the Electrochemical Society (Quebec, Canada, Electrochemical Society Inc., Pennington, NJ, 2005).
F. Gibbons, J.F. Chauwin, M. Desposito, and J.V. Jose, Biophys. J. 80, 2515 (2001).
F. Gittes, B. Mickey, J. Nettleton, and J. Howard, J. Cell Biol. 120, 923 (1993).
L.S. Goldstein and A.V. Philp, Annu. Rev. of Cell Dev. Biol. 15, 141 (1999).
D.D. Hackney, J. Biol. Chem. 269, 16508 (1994).
W.O. Hancock, Protein-based nanotechnology: Kinesin-microtubule driven systems for bioanalytical applications. Nanodevices for Life Sciences. (C. Kumar. Weinheim, Germany, Wiley-VCH, 2006) vol: 4, p. 241.
W.O. Hancock, and J. Howard, J. Cell Biol. 140, 1395 (1998).
H. Hess, G.D. Bachand, and V. Vogel, Chemistry 10, 2110 (2004).
H. Hess, J. Clemmens, C. Matzke, G. Bachand, B. Bunker, and V. Vogel, Appl. Phys. A-Mater. Sci. & Process. 75, 309 (2002).
Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama, and T.Q. Uyeda, Biophys. J. 81, 1555 (2001).
N. Hirokawa, Y. Noda, and Y. Okada, Curr. Opin. Cell Biol. 10, 60 (1998).
J. Howard, A.J. Hudspeth, and R.D. Vale, Nature 342, 154 (1989).
Y.M. Huang, M. Uppalapati, W.O. Hancock, and T.N. Jackson, IEEE Adv. Packaging 28, 564 (2005).
A.J. Hunt and J. Howard, Proc. Nat. Acad. Sci. USA 90, 11653 (1993).
A. Hyman, D. Drechsel, D. Kellogg, S. Salser, K. Sawin, P. Steffen, L. Wordeman, and T. Mitchison, Methods Enzymol. 196, 478 (1991).
L. Jia, S.G. Moorjani, T.N. Jackson, and W.O. Hancock, Biomedical Microdevices 6, 67 (2004).
L. Limberis, J.J. Magda, and R.J. Stewart, Nano Letters 1, 277 (2001).
C.-T. Lin, M.-T. Kao, K. Kurabayashi, and E. Meyhöfer, Small 2, 281 (2006).
E. Meyhöfer, and J. Howard, Proc. Nat. Acad. Sci. USA 92, 574 (1995).
S.G. Moorjani, L. Jia, T.N. Jackson, and W.O. Hancock, Nano Letters 3, 633 (2003).
I. Prots, R. Stracke, E. Unger, and K.J. Bohm, Cell Biol. Int. 27, 251 (2003).
T.K. Rostovtseva and S.M. Bezrukov, Biophys. J. 74, 2365 (1998).
W.R. Schief, R.H. Clark, A.H. Crevenna, and J. Howard, Proc. Nat. Acad. Sci. USA 101, 1183 (2004).
D.J. Sharp, G.C. Rogers, and J.M. Scholey, Biochi. Et. Biophys. Acta. 1496, 128 (2000).
M.F. Stock and D.D. Hackney, Methods Mol. Biol. 164, 43 (2001).
R. Stracke, K.J. Bohm, L. Wollweber, J.A. Tuszynski, and E. Unger, Biochem. Biophys. Res. Commun 293, 602 (2002).
K. Svoboda, C.F. Schmidt, B.J. Schnapp, and S.M. Block, Nature 365, 721 (1993).
M.G. van den Heuvel, C.T. Butcher, R.M. Smeets, S. Diez, and C. Dekker, Nano. Lett. 5, 1117 (2005).
M.G. van den Heuvel, M.P. de Graaff, and C. Dekker, Sci 312, 910 (2006).
R.C. Williams, Jr. and J.C. Lee, Methods Enzymol 85 Pt B, 376 (1982).
J.T. Yang, R.A. Laymon, and L.S. Goldstein, Cell 56, 879 (1989).
Acknowledgments
This project was funded by the Penn State Center for Nanoscale Science (NSF MRSEC DMR0213623) and by an NSF Biophotonics Grant (0323024) to W.O.H. and T.N.J. funded jointly by NSF and NIH/NIBIB.
Author information
Affiliations
Corresponding authors
Additional information
Ying-Ming Huang and Maruti Uppalapati contributed equally to this work.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Huang, YM., Uppalapati, M., Hancock, W.O. et al. Microtubule transport, concentration and alignment in enclosed microfluidic channels. Biomed Microdevices 9, 175–184 (2007). https://doi.org/10.1007/s10544-006-9019-1
Published:
Issue Date:
Keywords
- Kinesin
- Microtubule
- Motor proteins
- Molecular motors
- Microfabrication
- Microfluidics
- Active transport