Advertisement

Biomedical Microdevices

, Volume 9, Issue 1, pp 91–99 | Cite as

Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometer microcapsules

  • Shinji Sugiura
  • Tatsuya Oda
  • Yasuyuki Aoyagi
  • Ryota Matsuo
  • Tsuyoshi Enomoto
  • Kunio Matsumoto
  • Toshikazu Nakamura
  • Mitsuo Satake
  • Atsushi Ochiai
  • Nobuhiro Ohkohchi
  • Mitsutoshi Nakajima
Article

Abstract

Microencapsulation of genetically engineered cells has attracted much attention as an alternative nonviral strategy to gene therapy. Though smaller microcapsules (i.e. less than 300 μm) theoretically have various advantages, technical limitations made it difficult to prove this notion. We have developed a novel microfabricated device, namely a micro-airflow-nozzle (MAN), to produce 100 to 300 μm alginate microcapsules with a narrow size distribution. The MAN is composed of a nozzle with a 60 μm internal diameter for an alginate solution channel and airflow channels next to the nozzle. An alginate solution extruded through the nozzle was sheared by the airflow. The resulting alginate droplets fell directly into a CaCl2 solution, and calcium alginate beads were formed. The device enabled us to successfully encapsulate living cells into 150 μm microcapsules, as well as control microcapsule size by simply changing the airflow rate. The encapsulated cells had a higher growth rate and greater secretion activity of marker protein in 150 μm microcapsules compared to larger microcapsules prepared by conventional methods because of their high diffusion efficiency and effective scaffold surface area. The advantages of smaller microcapsules offer new prospects for the advancement of microencapsulation technology.

Keywords

Material fabrication Cell encapsulation Microcapsule Size control Microfluidic device 

Notes

Acknowledgments

We thank Mr. Y. Sando for helping with fabrication of the silicon plate. We also thank Kimica Corp. (Tokyo, Japan) for providing sodium alginate. This work was supported by the Nanotechnology Project, Ministry of Agriculture, Forestry and Fisheries, and the Program for Promotion of Fundamental Studies in Health Sciences of the Organization for Pharmaceutical Safety and Research of Japan.

References

  1. D.R. Albrecht, V.L. Tsang, R.L. Sah, and S.N. Bhatia, Lab Chip 5, 111 (2005).CrossRefGoogle Scholar
  2. H. R. Brandenberger and F. Widmer, Biotechnol. Prog. 15, 366 (1999).CrossRefGoogle Scholar
  3. B. Bugarski, Q.L. Li, M.F.A. Goosen, D. Poncelet, R.J. Neufeld, and Vunjakg, AIChE J. 40, 1026 (1994).CrossRefGoogle Scholar
  4. D. Chicheportiche and G. Reach, Diabetologia 31, 54 (1988).Google Scholar
  5. P. Cirone, J.M. Bourgeois, and P.L. Chang, Hum. Gene Ther. 14, 1065 (2003).CrossRefGoogle Scholar
  6. C. Dulieu, D. Poncelet, and R.J. Neufeld, in Encapsulation and Immobilization Techniques, edited by W.M. Kuhtreiber, R.P. Lanza and W.L. Chick (Birkhauser, Boston, 1999), p. 3.Google Scholar
  7. G. Hortelano, A. AlHendy, F.A. Ofosu, and P.L. Chang, Blood 87, 5095 (1996).Google Scholar
  8. T. Joki, M. Machluf, A. Atala, J.H. Zhu, N.T. Seyfried, I.F. Dunn, T. Abe, R.S. Carroll, and P.M. Black, Nat. Biotechnol. 19, 35 (2001).CrossRefGoogle Scholar
  9. T. Kawakatsu, Y. Kikuchi, and M. Nakajima, J. Am. Oil Chem. Soc. 74, 317 (1997).CrossRefGoogle Scholar
  10. I. Kobayashi, M. Nakajima, K. Chun, Y. Kikuchi, and H. Fukita, AIChE J. 48, 1639 (2002).CrossRefGoogle Scholar
  11. K. Kuba, K. Matsumoto, K. Date, H. Shimura, M. Tanaka, and T. Nakamura, Cancer Res. 60, 6737 (2000).Google Scholar
  12. T. Kushibiki, K. Matsumoto, T. Nakamura, and Y. Tabata, Gene Ther. 11, 1205 (2004).CrossRefGoogle Scholar
  13. F.A. Leblond, G. Simard, N. Henley, B. Rocheleau, P.M. Huet, and J.P. Halle, Cell Transplant. 8, 327 (1999).Google Scholar
  14. F. Lim and A. M. Sun, Science 210, 908 (1980).CrossRefGoogle Scholar
  15. V.A. Liu and S.N. Bhatia, Biomed. Microdev. 4, 257 (2002).CrossRefGoogle Scholar
  16. K. Matsumoto and T. Nakamura, Cancer Sci. 94, 321 (2003).CrossRefGoogle Scholar
  17. R. Nir, R. Lamed, L. Gueta, and E. Sahar, Appl. Environ. Microbiol. 56, 2870 (1990).Google Scholar
  18. T. Nisisako, T. Torii, and T. Higuchi, Lab Chip 2, 24 (2002).CrossRefGoogle Scholar
  19. H. Niwa, K. Yamamura, and J. Miyazaki, Gene 108, 193 (1991).CrossRefGoogle Scholar
  20. T.A. Read, D.R. Sorensen, R. Mahesparan, P.O. Enger, R. Timpl, B.R. Olsen, M.H.B. Hjelstuen, O. Haraldseth, and R. Bjerkvig, Nat. Biotechnol. 19, 29 (2001).CrossRefGoogle Scholar
  21. R. Robitaille, J.F. Pariseau, F.A. Leblond, M. Lamoureux, Y. Lepage, and J.P. Halle, J. Biomed. Mater. Res. 44, 116 (1999).CrossRefGoogle Scholar
  22. C.J.D. Ross and P.L. Chang, J. Biomater. Sci. Polym. Ed. 13, 953 (2002).CrossRefGoogle Scholar
  23. J. Schrezenmeir, L. Gero, C. Laue, J. Kirchgessner, A. Muller, A. Huls, R. Passmann, H.J. Hahn, L. Kunz, W. Mueller-Klieser, and et al., Transplant. Proc. 24, 2925 (1992).Google Scholar
  24. S. Sugiura, M. Nakajima, S. Iwamoto, and M. Seki, Langmuir 17, 5562 (2001).CrossRefGoogle Scholar
  25. S. Sugiura, T. Oda, Y. Izumida, Y. Aoyagi, M. Satake, A. Ochiai, N. Ohkohchi, and M. Nakajima, Biomaterials 26, 3327 (2005).CrossRefGoogle Scholar
  26. D. Tomioka, N. Maehara, K. Kuba, K. Mizumoto, M. Tanaka, K. Matsumoto, and T. Nakamura, Cancer Res. 61, 7518 (2001).Google Scholar
  27. J.M. Van Raamsdonk and P. L. Chang, J. Biomed. Mater. Res. 54, 264 (2001).CrossRefGoogle Scholar
  28. T. Visted, T. Furmanek, P. Sakariassen, W.B. Foegler, K. Sim, H. Westphal, R. Bjerkvig, and M. Lund-Johansen, Hum. Gene Ther. 14, 1429 (2003).CrossRefGoogle Scholar
  29. T. Wang, I. Lacik, M. Brissova, A.V. Anilkumar, A. Prokop, D. Hunkeler, R. Green, K. Shahrokhi, and A.C. Powers, Nat. Biotechnol. 15, 358 (1997).CrossRefGoogle Scholar
  30. J. Wen, K. Matsumoto, N. Taniura, D. Tomioka, and T. Nakamura, Cancer Gene Ther. 11, 419 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Shinji Sugiura
    • 1
    • 2
  • Tatsuya Oda
    • 3
  • Yasuyuki Aoyagi
    • 3
  • Ryota Matsuo
    • 3
  • Tsuyoshi Enomoto
    • 3
  • Kunio Matsumoto
    • 4
  • Toshikazu Nakamura
    • 4
  • Mitsuo Satake
    • 5
  • Atsushi Ochiai
    • 6
  • Nobuhiro Ohkohchi
    • 3
  • Mitsutoshi Nakajima
    • 1
  1. 1.Food Engineering DivisionNational Food Research InstituteTsukubaJapan
  2. 2.Research Center of Advanced BionicsNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  3. 3.Department of Surgery, Institute of Clinical MedicineUniversity of TsukubaTsukubaJapan
  4. 4.Division of Molecular Regenerative Medicine, Course of Advanced MedicineOsaka University Graduate School of MedicineSuitaJapan
  5. 5.Diagnostics Radiology DivisionNational Cancer Center HospitalChuo-kuJapan
  6. 6.Pathology DivisionNational Cancer Center Research Institute EastKashiwaJapan

Personalised recommendations