Biomedical Microdevices

, Volume 7, Issue 4, pp 323–329 | Cite as

A SU-8/PDMS Hybrid Microfluidic Device with Integrated Optical Fibers for Online Monitoring of Lactate

  • Min-Hsien Wu
  • Haoyuan Cai
  • Xia Xu
  • Jill P. G. Urban
  • Zhan-Feng Cui
  • Zheng Cui


A microfluidic device with integrated optical fibres was developed for online monitoring of lactate. The device consists of a SU-8 waveguide, microfluidic channels and grooves for the insertion of optic fibres. It was fabricated by one-step photolithography of SU-8 polymer resist. Different channel widths (50–300 μm) were tested in terms of detection sensitivity. A wide range of flow rates were applied to investigate the influence of flow rate on signal fluctuations. The separation between optical fibre sensor and microfluidic channel and the width of fluidic channel have been optimized to maximize the detection sensitivity. It was revealed that 250 μm of channel width is the optimum light path length for a compromise between detection sensitivity and interference of ambient light. The independence of detection signals on flow rates was demonstrated within the range of flow rate (0.5–5 ml/hr) tested. Compared with conventional lactate detection, the device is proved to have high accuracy, relatively low limit of detection (50 mg/L) and reasonably fast response time (100 sec). The fabrication of device is simple and low cost. The present work has provided some fundamental data for further system optimization to meet specific detection requirements.


microfluidic device SU-8 PDMS optical fibre online monitoring lactate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.L. Doutaz, and D. Lippens, Electron. Lett. 35, 243–244 (1999).Google Scholar
  2. V. Casimiri and C. Burstein, Analytica Chimica Acta 361, 45–53 (1998).CrossRefGoogle Scholar
  3. V. Casimiri and C. Burstein, Biosensors and Bioelectronics 11, 783–789 (1996).CrossRefGoogle Scholar
  4. L.M. Fu, R.J. Yang, C.H. Lin, Y.J. Pan, and G.B. Lee, Analytica Chimica Acta 507, 163–169 (2004).CrossRefGoogle Scholar
  5. F.G. Gao, A.S. Jeevarajan, and M.M. Anderson, Biotechnology and Bioengineering 86, 425–433 (2004).CrossRefGoogle Scholar
  6. R.J. Jackman, T.M. Floyd, R. Ghodssi, M.A. Schmidt, and K.F. Jensen, J. Micromech. Microeng. 11, 1–8 (2001).CrossRefGoogle Scholar
  7. J. Katrlik et al., Analytica Chimica Acta 379, 193–200 (1999).Google Scholar
  8. G.J. Kost, T.H. Nguyen, and Z. Tang, Arch Pathol Lab Med 124, 1128–1134 (2000).Google Scholar
  9. K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, and K. Suzuki, Analytica Chimica Acta 523, 165–170 (2004).CrossRefGoogle Scholar
  10. R. Kurita, K. Hayashi, X. Fan, K. Yamamoto, T. Kato, and O. Niwa, Sensors and Acturators B 87, 296–303 (2002).Google Scholar
  11. R.B. Lee and J.P.G. Urban, Biochem. J. 321, 95–102 (1997).Google Scholar
  12. G.B. Lee, C.H. Lin, and G.L. Chang, Sensors and Actuators A 103, 165–170 (2003).CrossRefGoogle Scholar
  13. C.H. Lin, G.B. Lee, L.M. Fu, and S.H. Chen, Biosensors and Bioelectronics 20, 83–90 (2004).Google Scholar
  14. C.H. Lin, G.B. Lee, S.H. Chen, and G.L. Chang, Sensors and Actuators A 107, 125–131 (2003).CrossRefGoogle Scholar
  15. K.B. Mogensen, J. El-Ali, A. Wolff, and J.P. Kutter, Applied Optics 42, 4072–4079 (2003).Google Scholar
  16. M. Nathan, O. Levy, I. Goldfarb, and A. Ruzin, Journal of Applied Physics 94, 7932–7934 (2003).CrossRefGoogle Scholar
  17. F. Palmisano, R. Rizzi, D. Centonze, and P.G. Zambonin, Biosensors and Bioelectronics 15, 531–539 (2000).CrossRefGoogle Scholar
  18. J. Perdomo, H. Hinkers, C. Sundermeier, W. Seifert, O. Martinez Morell, and M. Knoll, Biosensors and Bioelectronics 15, 515–522 (2000).CrossRefGoogle Scholar
  19. P.S. Petrou, I. Moser, and G. Jobst, Biosensors and Bioelectronics 18, 613–619 (2003).CrossRefGoogle Scholar
  20. B.R. Soller, et al., J. Card Surg. 19, 167–174 (2004).CrossRefGoogle Scholar
  21. M. Suzuki and H. Akaguma, Sensors and Acturators B 64, 136–141 (2000).Google Scholar
  22. Y.S. Wu, T.H. Tsai, T.F. Wu, and F.C. Cheng, Journal of Chromatography A 913, 341–347 (2001).CrossRefGoogle Scholar
  23. L. Yang, P.T. Kissinger, and T. Ohara, Current Separation 14, 31–35 (1995).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Min-Hsien Wu
    • 1
  • Haoyuan Cai
    • 2
  • Xia Xu
    • 1
  • Jill P. G. Urban
    • 3
  • Zhan-Feng Cui
    • 1
  • Zheng Cui
    • 4
  1. 1.Department of Engineering ScienceUniversity of OxfordUK
  2. 2.Institute of ElectronicsChinese Academy of SciencesBeijingP.R. China
  3. 3.University Laboratory of PhysiologyUniversity of OxfordUK
  4. 4.Central Microstructure FacilityRutherford Appleton LaboratoryUK

Personalised recommendations