Skip to main content
Log in

Modeling and Optimization of High-Sensitivity, Low-Volume Microfluidic-Based Surface Immunoassays

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Microfluidics are emerging as a promising technology for miniaturizing biological assays for applications in diagnostics and research in life sciences because they enable the parallel analysis of multiple analytes with economy of samples and in short time. We have previously developed microfluidic networks for surface immunoassays where antibodies that are immobilized on one wall of a microchannel capture analytes flowing in the microchannel. This technology is capable of detecting analytes with picomolar sensitivity and from sub-microliter volume of sample within 45 min. This paper presents the theoretical modeling of these immunoassays where a finite difference algorithm is applied to delineate the role of the transport of analyte molecules in the microchannel (convection and diffusion), the kinetics of binding between the analyte and the capture antibodies, and the surface density of the capture antibody on the assay. The model shows that assays can be greatly optimized by varying the flow velocity of the solution of analyte in the microchannels. The model also shows how much the analyte-antibody binding constant and the surface density of the capture antibodies influence the performance of the assay. We then derive strategies to optimize assays toward maximal sensitivity, minimal sample volume requirement or fast performance, which we think will allow further development of microfluidic networks for immunoassay applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • L.M. Amzel and R.J. Poljak, Annu. Rev. Biochem. 48, 961–997 (1979).

    Article  CAS  PubMed  Google Scholar 

  • F.S. Apple, R.H. Christenson, R. Valdes, A. Andriak, A. Berg, S. Duh, Y. Feng, S.A. Jortani, N.A. Johnson, B. Koplen, K. Mascotti, and A.H.B. Wu, Clin. Chem. 45, 199–205 (1999).

    CAS  PubMed  Google Scholar 

  • G. Balgi, D.E. Leckband, and J.M. Nitsche, Biophys. J. 68, 2251–2260 (1995).

    CAS  PubMed  Google Scholar 

  • A. Bernard, D. Fitzli, P. Sonderegger, E. Delamarche, B. Michel, H.R. Bosshard, and H. Biebuyck, Nature Biotechnology 19, 866–869 (2001a).

    Article  CAS  Google Scholar 

  • A. Bernard, B. Michel, and E. Delamarche, Anal. Chem. 73, 8–12 (2001b).

    Article  CAS  Google Scholar 

  • S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattiger, and E. Delamarche, Lab on a Chip 4, 563–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  • E. Delamarche, in Nanobiotechnology, edited by C. Niemeyer and C. Mirkin (Wiley-VCH Verlag, Weinheim, 2004), pp. 31–52.

    Google Scholar 

  • D.A. Edwards, J. Appl. Math. 63, 89–112 (1999).

    MathSciNet  Google Scholar 

  • D.A. Edwards, B. Goldstein, and D.S. Cohen, J. Math. Biol. 39, 533–561 (1999).

    CAS  PubMed  Google Scholar 

  • R.P. Ekins, Clin. Chem. 44, 2015–2030 (1998).

    CAS  PubMed  Google Scholar 

  • Genetix, ‘aQuire microarray scanner specification sheet’. Genetix Ltd., http://www.genetix.com (2004).

  • R. Gentry, R. Martin, and B. Daly, J. Comp. Phys. 1, 87–118 (1966).

    Article  CAS  Google Scholar 

  • M. Griebel, T. Dornseifer, and T. Neunhoeffer, Numerische Simulation in der Strömungsmechanik (Vieweg, Braunschweig/Wiesbaden, 1995).

  • C. Hirt, B. Nichols, and N. Romero, Technical Report LA-5852, Los Alamos Scientific Lab. (1975).

  • J. Jenkins, B. Prabhakarpandian, K. Lenghaus, J. Hickman, and S. Sundaram, Anal. Biochem. 331, 207–215 (2004).

    Article  CAS  PubMed  Google Scholar 

  • D. Juncker, H. Schmid, U. Drechsler, H. Wolf, M. Wolf, B. Michel, N. de Rooij, and E. Delamarche, Anal. Chem. 74, 6139–6144 (2002).

    Article  CAS  PubMed  Google Scholar 

  • W. Koenig, M. Sund, B. Filipiak, A. Döring, H. Löwel, and E. Ernst, Arterioscler. Thromb. Vasc. Biol. 18, 768–772 (1998).

    CAS  PubMed  Google Scholar 

  • A. Manz and H. Becker, Microsystem Technology in Chemistry and Life Science (Springer-Verlag, Heidelberg, 1998).

    Google Scholar 

  • S. Metsämuuronen, S. Reinikainen, and M. Nyström, Desalination 149, 453–458 (2002).

    Article  Google Scholar 

  • D.G. Myszka, X. He, M. Dembo, T.A. Morton, and B. Goldstein, Biophys. J. 75, 583–594 (1998).

    CAS  PubMed  Google Scholar 

  • N.T. Nguyen and S.T. Wereley, Fundamentals and Applications of Microfluidics (Artech House, Boston, 2002).

    Google Scholar 

  • K.L. Prime and G.M. Whitesides, Science 252, 1164–1167 (1991).

    CAS  PubMed  Google Scholar 

  • L.C. Santora, Z. Kaymkcalan, P. Sakorafas, I.S. Krull, and K. Grant, Anal. Chem. 299, 119–129 (2001).

    CAS  Google Scholar 

  • K.E. Sapsford, Z. Liron, Y.S. Shubin, and F.S. Ligler, Anal. Chem. 73, 5518–5524 (2001).

    Article  CAS  PubMed  Google Scholar 

  • E.F.H. Tay (ed.), Microfluidics and BioMEMS Applications (Kluwer Academic Publishers, Boston, 2002).

    Google Scholar 

  • R. Vijayendran, F.S. Ligler, and D.E. Leckband, Anal. Chem. 71, 5405–5412 (1999).

    Article  CAS  Google Scholar 

  • D. Wild (ed.), The Immunoassay Handbook (Nature Publishing Group, London, 2001).

    Google Scholar 

  • M. Wolf, D. Juncker, B. Michel, P. Hunziker, and E. Delamarche. Biosens. Bioelectr. 19, 1193–1202 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, M., Delamarche, E., Wolf, M. et al. Modeling and Optimization of High-Sensitivity, Low-Volume Microfluidic-Based Surface Immunoassays. Biomed Microdevices 7, 99–110 (2005). https://doi.org/10.1007/s10544-005-1587-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-005-1587-y

Navigation