Advertisement

BIT Numerical Mathematics

, Volume 58, Issue 3, pp 691–728 | Cite as

Unconditionally positive and conservative third order modified Patankar–Runge–Kutta discretizations of production–destruction systems

  • Stefan Kopecz
  • Andreas Meister
Article
  • 126 Downloads

Abstract

Modified Patankar–Runge–Kutta (MPRK) schemes are numerical methods for the solution of positive and conservative production–destruction systems. They adapt explicit Runge–Kutta schemes to ensure positivity and conservation irrespective of the time step size. The first two members of this class, the first order MPE scheme and the second order MPRK22(1) scheme, have been successfully applied in a large number of applications. Recently, a general definition of MPRK schemes was introduced and necessary as well as sufficient conditions to obtain first and second order MPRK schemes were presented. In this paper we derive necessary and sufficient conditions for third order MPRK schemes and introduce the first family of such schemes. The theoretical results are confirmed by numerical experiments considering linear and nonlinear as well as nonstiff and stiff systems of differential equations.

Keywords

Patankar-type schemes Modified Patankar–Runge–Kutta schemes Unconditional positivity Conservation 

Mathematics Subject Classification

65L05 65L06 65L20 

References

  1. 1.
    Benz, J., Meister, A., Zardo, P.A.: A conservative, positivity preserving scheme for advection-diffusion-reaction equations in biochemical applications. In: Tadmor, E., Liu, J.-G., Tzavaras, A. (eds.) Hyperbolic Problems: Theory, Numerics and Applications, Volume 67.2 of Proceedings of Symposia in Applied Mathematics, pp. 399–408. American Mathematical Society, Providence (2009)zbMATHGoogle Scholar
  2. 2.
    Bonaventura, L., Rocca, A.D.: Unconditionally strong stability preserving extensions of the TR-BDF2 method. J. Sci. Comput. 70(2), 859–895 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Broekhuizen, N., Rickard, G.J., Bruggeman, J., Meister, A.: An improved and generalized second order, unconditionally positive, mass conserving integration scheme for biochemical systems. Appl. Numer. Math. 58(3), 319–340 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bruggeman, J., Burchard, H., Kooi, B.W., Sommeijer, B.: A second-order, unconditionally positive, mass-conserving integration scheme for biochemical systems. Appl. Numer. Math. 57(1), 36–58 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Burchard, H., Bolding, K., Kühn, W., Meister, A., Neumann, T., Umlauf, L.: Description of a flexible and extendable physical–biogeochemical model system for the water column. J. Marine Syst. 61(3–4), 180–211 (2006)CrossRefGoogle Scholar
  6. 6.
    Burchard, H., Deleersnijder, E., Meister, A.: A high-order conservative Patankar-type discretisation for stiff systems of production–destruction equations. Appl. Numer. Math. 47(1), 1–30 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Burchard, H., Deleersnijder, E., Meister, A.: Application of modified Patankar schemes to stiff biogeochemical models for the water column. Ocean Dyn. 55(3), 326–337 (2005)CrossRefGoogle Scholar
  8. 8.
    Formaggia, L., Scotti, A.: Positivity and conservation properties of some integration schemes for mass action kinetics. SIAM J. Numer. Anal. 49(3), 1267–1288 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Publishing Co., Inc., Singapore (2011)CrossRefGoogle Scholar
  10. 10.
    Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gressel, O.: Toward realistic simulations of magneto-thermal winds from weakly-ionized protoplanetary disks. J. Phys. Conf. Ser. 837(1) (2017).  https://doi.org/10.1088/1742-6596/837/1/012008 Google Scholar
  12. 12.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I. Nonstiff Problems, 2nd edn. Springer, Berlin (1993)zbMATHGoogle Scholar
  13. 13.
    Hense, I., Beckmann, A.: The representation of cyanobacteria life cycle processes in aquatic ecosystem models. Ecol. Model. 221(19), 2330–2338 (2010)CrossRefGoogle Scholar
  14. 14.
    Hense, I., Burchard, H.: Modelling cyanobacteria in shallow coastal seas. Ecol. Model. 221(2), 238–244 (2010)CrossRefGoogle Scholar
  15. 15.
    Horváth, Z.: Positivity of Runge–Kutta and diagonally split Runge–Kutta methods. Appl. Numer. Math. 28(2), 309–326 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Howie, J.M.: Real Analysis, Springer Undergraduate Mathematics Series. Springer, London (2001)Google Scholar
  17. 17.
    Klar, J.S., Mücket, J.P.: A detailed view of filaments and sheets in the warm-hot intergalactic medium. Astronom. Astrophys. 522, A114 (2010)CrossRefGoogle Scholar
  18. 18.
    Kopecz, S., Meister, A.: On order conditions for modified Patankar–Runge–Kutta schemes. Appl. Numer. Math. 123, 159–179 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lefever, R., Nicolis, G.: Chemical instabilities and sustained oscillations. J. Theor. Biol. 30(2), 267–284 (1971)CrossRefGoogle Scholar
  20. 20.
    Meister, A., Benz, J.: Phosphorus Cycles in Lakes and Rivers: Modeling, Analysis, and Simulation, pp. 713–738. Springer, Berlin (2010)zbMATHGoogle Scholar
  21. 21.
    Meister, A., Butcher, J.C.: Sensitivity of modified patankar-type schemes for systems of conservative production–destruction equations. AIP Conf. Proc. 1863(1), 320006 (2017)CrossRefGoogle Scholar
  22. 22.
    Meister, A., Ortleb, S.: On unconditionally positive implicit time integration for the DG scheme applied to shallow water flows. Int. J. Numer. Methods Fluids 76(2), 69–94 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ortleb, S., Hundsdorfer, W.: Patankar-type Runge-Kutta schemes for linear PDEs. AIP Conf. Proc. 1863(1) (2017).  https://doi.org/10.1063/1.4992489
  24. 24.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Series in Computational Methods in Mechanics and Thermal Sciences. Hemisphere Pub. Corp., New York (1980)CrossRefGoogle Scholar
  25. 25.
    Radtke, H., Burchard, H.: A positive and multi-element conserving time stepping scheme for biogeochemical processes in marine ecosystem models. Ocean Model. 85, 32–41 (2015)CrossRefGoogle Scholar
  26. 26.
    Ralston, A., Rabinowitz, P.: A First Course in Numerical Analysis, 2nd edn. Dover Publications Inc., Mineola (2001)zbMATHGoogle Scholar
  27. 27.
    Schippmann, B., Burchard, H.: Rosenbrock methods in biogeochemical modelling—a comparison to Runge–Kutta methods and modified Patankar schemes. Ocean Model. 37(3–4), 112–121 (2011)CrossRefGoogle Scholar
  28. 28.
    Semeniuk, K., Dastoor, A.: Development of a global ocean mercury model with a methylation cycle: outstanding issues. Glob. Biogeochem. Cycles 31(2), 400–433 (2017)Google Scholar
  29. 29.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Strehmel, K., Weiner, R., Podhaisky, H.: Numerik gewöhnlicher Differentialgleichungen: Nichtsteife, steife und differential-algebraische Gleichungen. Springer, Berlin (2012)CrossRefGoogle Scholar
  31. 31.
    Warns, A., Hense, I., Kremp, A.: Modelling the life cycle of dinoflagellates: a case study with biecheleria baltica. J. Plankton Res. 35(2), 379–392 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für MathematikUniversität KasselKasselGermany

Personalised recommendations