Skip to main content
Log in

Numerical integration using integrals over hyperplane sections of simplices in a triangulation of a polytope

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider the problem of approximating a definite integral of a given function f when, rather than its values at some points, a number of integrals of f over some hyperplane sections of simplices in a triangulation of a polytope P in \(\mathbb {R}^d\) are only available. We present several new families of “extended” integration formulas, all of which are a weighted sum of integrals over some hyperplane sections of simplices, and which contain in a special case of our result multivariate analogues of the midpoint rule, the trapezoidal rule and the Simpson’s rule. Along with an efficient algorithm for their implementations, several illustrative numerical examples are provided comparing these cubature formulas among themselves. The paper also presents the best possible explicit constants for their approximation errors. We perform numerical tests which allow the comparison of the new cubature formulas. Finally, we will discuss a conjecture suggested by the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Acu, A.M., Gonska, H.: Generalized Alomari functionals. Mediterr. J. Math. 14, 1–17 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bachar, M., Guessab, A., Mohammed, O., Zaim, Y.: New cubature formulas and Hermite–Hadamard type inequalities using integrals over some hyperplanes in the \(d\)-dimensional hyper-rectangle. Appl. Math. Comput. 315(15), 347–362 (2017)

    MathSciNet  Google Scholar 

  3. Bachar, M., Guessab, A.: A simple necessary and sufficient condition for the enrichment of the Crouzeix–Raviart element. Appl. Anal. Discrete Math. 10, 378–393 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bachar, M., Guessab, A.: Characterization of the existence of an enriched linear finite element approximation using biorthogonal systems. Results Math. 70(3), 401–413 (2016)

    Article  MathSciNet  Google Scholar 

  5. Barvinok, A.I.: Computation of exponential integrals. J. Math. Sci. 70, 1934–1944 (1994)

    Article  MathSciNet  Google Scholar 

  6. Chin, Eric B., Lasserre, Jean B., Sukumar, N.: Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra. Comput. Mech. 56(6), 967–981 (2015)

    Article  MathSciNet  Google Scholar 

  7. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  8. Crouzeix, M., Raviart, P.A.: Conforming and non-conforming finite element methods for solving the stationary Stokes equations. R.A.I.R.O Anal. Numer. 7, 33–76 (1973)

    Article  Google Scholar 

  9. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Series: Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    MATH  Google Scholar 

  10. Guessab, A., Schmeisser, G.: Convexity results and sharp error estimates in approximate multivariate integration. Math. Comput. 73(247), 1365–1384 (2004)

    Article  MathSciNet  Google Scholar 

  11. Guessab, A.: Approximations of differentiable convex functions on arbitrary convex polytopes. Appl. Math. Comput. 240, 326–338 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Hammer, P.C.: The midpoint method of numerical integration. Math. Mag. 31, 193–195 (1958)

    Article  MathSciNet  Google Scholar 

  13. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer Texts in Applied Mathematics, vol. 54. Springer, New York (2008)

    MATH  Google Scholar 

  14. Hossain, M.A., Islam, MdSh: Generalized composite numerical integration rule over a polygon using Gaussian quadrature. Dhaka Univ. J. Sci. 62(1), 25–29 (2014)

    Google Scholar 

  15. Lasserre, J.B., Zeron, E.S.: Solving a class of multivariate integration problems via Laplace techniques. Appl. Math. 28(4), 391–405 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Ouazzi, A., Turek, S.: Unified edge-oriented stabilization of nonconforming FEM for incompressible flow problems: numerical investigations. J. Numer. Math. 15(4), 299–322 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Persson, P.O., Strang, G.: A simple mesh generator in MATLAB. SIAM Rev. 46, 329–345 (2004)

    Article  MathSciNet  Google Scholar 

  18. Persson, P.O.: Mesh Generation for Implicit Geometries. Ph.D. thesis, Department of Mathematics, MIT (2004)

  19. Vermolen, F., Segal, G.: On an integration rule for products of barycentric coordinates over simplexes in \(\mathbb{R}^d,\) Technical Report 17–02. Delft University of Technology, DIAM (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allal Guessab.

Additional information

Communicated by Jan Hesthaven.

One of the authors, Boris Semisalov would like to acknowledge Russian Science Foundation (Project No. 17-71-10135) for financial support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guessab, A., Semisalov, B. Numerical integration using integrals over hyperplane sections of simplices in a triangulation of a polytope. Bit Numer Math 58, 613–660 (2018). https://doi.org/10.1007/s10543-018-0703-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0703-3

Keywords

Mathematics Subject Classification

Navigation