Numerical integration using integrals over hyperplane sections of simplices in a triangulation of a polytope

Article

Abstract

In this paper, we consider the problem of approximating a definite integral of a given function f when, rather than its values at some points, a number of integrals of f over some hyperplane sections of simplices in a triangulation of a polytope P in \(\mathbb {R}^d\) are only available. We present several new families of “extended” integration formulas, all of which are a weighted sum of integrals over some hyperplane sections of simplices, and which contain in a special case of our result multivariate analogues of the midpoint rule, the trapezoidal rule and the Simpson’s rule. Along with an efficient algorithm for their implementations, several illustrative numerical examples are provided comparing these cubature formulas among themselves. The paper also presents the best possible explicit constants for their approximation errors. We perform numerical tests which allow the comparison of the new cubature formulas. Finally, we will discuss a conjecture suggested by the numerical results.

Keywords

Cubature Approximation Convexity Best constants Error estimates 

Mathematics Subject Classification

65D32 33C45 41A44 

References

  1. 1.
    Acu, A.M., Gonska, H.: Generalized Alomari functionals. Mediterr. J. Math. 14, 1–17 (2017)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bachar, M., Guessab, A., Mohammed, O., Zaim, Y.: New cubature formulas and Hermite–Hadamard type inequalities using integrals over some hyperplanes in the \(d\)-dimensional hyper-rectangle. Appl. Math. Comput. 315(15), 347–362 (2017)MathSciNetGoogle Scholar
  3. 3.
    Bachar, M., Guessab, A.: A simple necessary and sufficient condition for the enrichment of the Crouzeix–Raviart element. Appl. Anal. Discrete Math. 10, 378–393 (2016)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bachar, M., Guessab, A.: Characterization of the existence of an enriched linear finite element approximation using biorthogonal systems. Results Math. 70(3), 401–413 (2016)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Barvinok, A.I.: Computation of exponential integrals. J. Math. Sci. 70, 1934–1944 (1994)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chin, Eric B., Lasserre, Jean B., Sukumar, N.: Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra. Comput. Mech. 56(6), 967–981 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)MATHGoogle Scholar
  8. 8.
    Crouzeix, M., Raviart, P.A.: Conforming and non-conforming finite element methods for solving the stationary Stokes equations. R.A.I.R.O Anal. Numer. 7, 33–76 (1973)CrossRefMATHGoogle Scholar
  9. 9.
    Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Series: Applied Mathematical Sciences, vol. 159. Springer, New York (2004)MATHGoogle Scholar
  10. 10.
    Guessab, A., Schmeisser, G.: Convexity results and sharp error estimates in approximate multivariate integration. Math. Comput. 73(247), 1365–1384 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Guessab, A.: Approximations of differentiable convex functions on arbitrary convex polytopes. Appl. Math. Comput. 240, 326–338 (2014)MathSciNetMATHGoogle Scholar
  12. 12.
    Hammer, P.C.: The midpoint method of numerical integration. Math. Mag. 31, 193–195 (1958)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer Texts in Applied Mathematics, vol. 54. Springer, New York (2008)MATHGoogle Scholar
  14. 14.
    Hossain, M.A., Islam, MdSh: Generalized composite numerical integration rule over a polygon using Gaussian quadrature. Dhaka Univ. J. Sci. 62(1), 25–29 (2014)Google Scholar
  15. 15.
    Lasserre, J.B., Zeron, E.S.: Solving a class of multivariate integration problems via Laplace techniques. Appl. Math. 28(4), 391–405 (2001)MathSciNetMATHGoogle Scholar
  16. 16.
    Ouazzi, A., Turek, S.: Unified edge-oriented stabilization of nonconforming FEM for incompressible flow problems: numerical investigations. J. Numer. Math. 15(4), 299–322 (2007)MathSciNetMATHGoogle Scholar
  17. 17.
    Persson, P.O., Strang, G.: A simple mesh generator in MATLAB. SIAM Rev. 46, 329–345 (2004)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Persson, P.O.: Mesh Generation for Implicit Geometries. Ph.D. thesis, Department of Mathematics, MIT (2004)Google Scholar
  19. 19.
    Vermolen, F., Segal, G.: On an integration rule for products of barycentric coordinates over simplexes in \(\mathbb{R}^d,\) Technical Report 17–02. Delft University of Technology, DIAM (2017)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques et de leurs Applications, UMR CNRS 4152Université de Pau et des Pays de l’AdourPauFrance
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of Computational Technologies SB RASNovosibirskRussia

Personalised recommendations