BIT Numerical Mathematics

, Volume 56, Issue 3, pp 807–832 | Cite as

Bounds for truncation and perturbation errors of nonuniform sampling series

  • M. H. Annaby
  • R. M. Asharabi


This paper introduces a comprehensive study of truncation and perturbation errors of nonuniform sampling, interpolation, representations. We derive pointwise as well as global estimates associated with the truncated nonuniform sampling formulae. The study of the perturbation error involves the estimation of the amplitude error which results from replacing the actual samples by approximate ones, as well as the jitter error arising when alternative nodes replace the original nodes, is carried out with rigorous error bounds. Numerical and geometrical verifications of the accuracy of our estimates are exhibited.


Nonuniform sampling theorems Truncation  Amplitude and jitter errors 

Mathematics Subject Classification

30D10 41A05 41A30 94A20 



The authors wish to thank Alexander von Humboldt foundation for the Grant 3.4-JEM/142916 and 3.4-8131KAT/1039259.


  1. 1.
    Annaby, M.H., Asharabi, R.M.: Truncation, amplitude and jitter errors on \(\mathbb{R}\) for sampling series derivatives. J. Approx. Theory. 163, 336–362 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Berrut, J.-P.: Barycentric formulae for cardinal (SINC-) interpolants. Numer. Math. 54, 703–718 (1989) [Erratum in Numer. Math. 55 (1989), 747]Google Scholar
  3. 3.
    Berrut, J.-P.: First applications of a formula for the error of finite sinc interpolation. Numer. Math. 112, 341–361 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Birkhoff, G., MacLane, S.: Survey of Modern Algebra. The Macmillan Co., New York (1947)MATHGoogle Scholar
  5. 5.
    Boas, R.P.: Entire Functions. Academic Press, New York (1954)MATHGoogle Scholar
  6. 6.
    Brown Jr., J.L.: Bounds for truncation error in sampling expansion of bandlimited signals. IEEE Trans. Inf. Theory IT-15, 440–444 (1969)Google Scholar
  7. 7.
    Butzer, P.L.: A survey of the Whitteker–Shannon sampling theorem and some of its extensions. J. Math. Res. Expo. 3, 185–212 (1983)MathSciNetMATHGoogle Scholar
  8. 8.
    Butzer, P.L., Engels, W., Scheben, U.: Magnitude of the truncation error in sampling expansions of bandlimited signals. IEEE Trans. Acoust. Speech Signal Process. ASSP-30, 906–912 (1982)Google Scholar
  9. 9.
    Butzer, P.L., Higgins, J.R., Stens, R.L.: Sampling Theory of Signal Analysis, Development of Mathematics 1950–2000. Birkhäuser, Basel (2000)MATHGoogle Scholar
  10. 10.
    Butzer, P.L., Splettstösser, W.: On quantization, truncation and jitter errors in the sampling theorem and its generalizations. Signal Process. 2, 101–112 (1980)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Butzer, P.L., Schmeisser, G., Stens, R.L.: An introduction to sampling analysis. Nonuniform sampling. Inf. Technol. Transm. Process. Storage, pp. 17–121. Kluwer/Plenum, New York (2001)Google Scholar
  12. 12.
    Butzer, P.L., Splettstösser, W., Stens, R.L.: The sampling theorem and linear prediction in signal analysis. Jahresber. Deutsch. Math.-Verein. 90, 1–70 (1988)MathSciNetMATHGoogle Scholar
  13. 13.
    Eldar, Y.C., Oppenheim, A.V.: Filterbank reconstruction of bandlimited signals from nonuniform and generalized samples. IEEE Trans. Signal Process. 48, 2864–2875 (2000)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gautschi, W.: Barycentric formulae for cardinal (SINC-) interpolants by Jean-Paul Berrut. Numer. Math. 87, 791–792 (2000)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Elsevier/Academic Press, Amsterdam, Oxford (2007)MATHGoogle Scholar
  16. 16.
    Helms, H.D., Thomas, J.B.: Truncation error of sampling theorem expansion. Proc. IRE 50, 179–184 (1962)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Higgins, J.R.: Sampling Theory in Fourier and Signal Analysis Foundations. Oxford University Press, Oxford (1996)MATHGoogle Scholar
  18. 18.
    Hinsen, G.: Explicit irregular sampling formulas. J. Comput. Appl. Math. 40, 177–198 (1992)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Jagerman, D.: Bounds for truncation error of the sampling expansion. SIAM J. Appl. Math. 14, 714–723 (1966)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Jenq, Y.C.: Digital spectra of nonuniformly sampled signals: fundamentals and high-speed waveform digitizers. IEEE Trans. Instrum. Meas. 37, 245–251 (1988)CrossRefGoogle Scholar
  21. 21.
    Li, X.M.: Uniform bounds for sampling expansions. J. Approx. Theory 93, 100–113 (1998)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Margolis, E., Eldar, Y.C.: Nonuniform sampling of periodic bandlimited signals. IEEE Trans. Signal Process. 56, 2728–2745 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    McArthur, K.M., Bowers, K.L., Lund, J.: The Sinc method in multiple space dimensions: model problems. Numer. Math. 56, 789–816 (1989)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Piper Jr., H.S.: Bounds for truncation error in sampling expansios of finite energy bandlimited signals. IEEE Trans. Inf. Theory IT-21, 482–485 (1975)Google Scholar
  25. 25.
    Prudnikov, A.P., Brychkov, YuA, Marichev, O.I.: Integrals and Series, vol. 15. Gordon and Breach, New York (1986)MATHGoogle Scholar
  26. 26.
    Splettstösser, W., Stens, R.L., Wilmes, G.: On approximation by the interpolatin series of G. Valiron. Funct. Approx. Comment. Math. 11, 39–56 (1981)MathSciNetMATHGoogle Scholar
  27. 27.
    Tao, R., Li, B.-Z., Wang, Y., Aggrey, G.K.: On sampling of band-limited signals associated with the linear canonical transform. IEEE Trans. Signal Process. 56, 5454–5464 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yao, K., Thomas, J.B.: On truncation error bounds for sampling representations of bandlimited signals. IEEE Trans. Aerosp. Electron. Syst. AES-2, 640–647 (1966)Google Scholar
  29. 29.
    Yen, J.L.: On nonuniform sampling of bandwidth-limited signals. IEEE Trans. Circuit Theory 3, 251–257 (1956)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Department of Mathematics, College of Arts and SciencesNajran UniverstyNajranSaudi Arabia

Personalised recommendations