Advertisement

BIT Numerical Mathematics

, Volume 54, Issue 3, pp 587–605 | Cite as

A remedy for the failure of the numerical steepest descent method on a class of oscillatory integrals

  • Andreas Asheim
Article

Abstract

In this paper we demonstrate that the numerical method of steepest descent fails when applied in a straight forward fashion to the most commonly occurring highly oscillatory integrals in scattering theory. Through a polar change of variables, however, the integral can be reformulated so that it can be solved efficiently using a combination of oscillatory integration techniques and classical quadrature. The approach is described in detail and demonstrated numerically with some oscillatory integral examples. The numerical examples demonstrate that our approach avoids the failure in some special cases, such as in an acoustic scattering model oscillatory integral with observation point located in the illuminated region. This paves the way for using the framework of numerical steepest descent methods on a wider class of problems, like the 3D high frequency scattering from convex obstacles, up to now only handled in a satisfactory way by methods due to Ganesh and Hawkins (J Comp Phys 230:104–125, 2011).

Keywords

Multivariate oscillatory integrals Oscillatory quadrature Scattering 

Mathematics Subject Classification (2010)

65D32 30E20 34L25 

References

  1. 1.
    Asheim, A.: A combined Filon/asymptotic quadrature method for highly oscillatory problems. BIT 48(3), 425–448 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Asheim, A., Huybrechs, D.: Asymptotic analysis of numerical steepest descent with path approximations. Found. Comput. Math. 10(6), 647–671 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Asheim, A., Huybrechs, D.: Local solutions to high-frequency 2D scattering problems. J. Comput. Phys. 229, 5357–5372 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Blumenson, L.E.: Classroom notes: a derivation of \(n\)-dimensional spherical coordinates. Am. Math. Mon. 67(1), 63–66 (1960)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bouwkamp, C.: Diffraction theory. Rep. Prog. Phys. 17, 35 (1954)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bruno, O., Geuzaine, C.: An o(1) integration scheme for three-dimensional surface scattering problems. J. Comput. Appl. Math. 204(2), 463–476 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numerica 21, 89–305 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Deaño, A., Huybrechs, D.: Complex Gaussian quadrature of oscillatory integrals. Numer. Math. 112(2), 197–219 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dominguez, V., Graham, I.G., Smyshlyaev, V.P.: A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Num. Math. 106, 471–510 (2007)Google Scholar
  10. 10.
    Dominguez, V., Graham, I.G., Smyshlyaev, V.P.: Stability and error estimates for Filon–Clenshaw–Curtis rules for highly oscillatory integrals. IMA J. Numer. Anal. 31(4), 1253–1280 (2011)Google Scholar
  11. 11.
    Ganesh, M., Hawkins, S.C.: A fully discrete Galerkin method for high frequency exterior acoustic scattering in three dimensions. J. Comput. Phys. 230(1), 104–125 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ganesh, M., Langdon, S., Sloan, I.H.: Efficient evaluation of highly oscillatory acoustic scattering surface integrals. J. Comput. Appl. Math. 204(2), 363–374 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Huybrechs, D., Olver, S.: Superinterpolation in highly oscillatory quadrature. Found. Comput. Math. 12(2), 203–228 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Huybrechs, D., Vandewalle, S.: On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal. 44(3), 1026–1048 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Huybrechs, D., Vandewalle, S.: The construction of cubature rules for multivariate highly oscillatory integrals. Math. Comp. 76(260), 1955–1980 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Iserles, A., Nørsett, S.P.: On quadrature methods for highly oscillatory integrals and their implementation. BIT 44(4), 755–772 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Iserles, A., Nørsett, S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. A 461(2057), 1383–1399 (2005)CrossRefMATHGoogle Scholar
  18. 18.
    Iserles, A., Nørsett, S.P.: On the computation of highly oscillatory multivariate integrals with stationary points. BIT 46(3), 549–566 (2006)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Iserles, A., Nørsett, S.P.: Quadrature methods for multivariate highly oscillatory integrals using derivatives. Math. Comp. 75, 1233–1258 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kemp, J.A., Campbell, D.M., Amir, N.: Multimodal radiation impedance of a rectangular duct terminated in an infinite baffle. Acta Acustica united with Acustica 87(1), 11–15 (2001)Google Scholar
  21. 21.
    Levin, D.: Fast integration of rapidly oscillatory functions. J. Comput. Appl. Math. 67, 95–101 (1996)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Nédélec, J.: Acoustic and electromagnetic equations: Integral representations for harmonic problems, vol. 144. Springer, New York (2001)Google Scholar
  23. 23.
    Olver, S.: Moment-free numerical integration of highly oscillatory functions. IMA J. Numer. Anal. 26(2), 213–227 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Olver, S.: On the quadrature of multivariate highly oscillatory integrals over non-polytope domains. Numer. Math. 103(4), 643–665 (2006)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Pierce, A.: Acoustics: an introduction to its physical principles and applications. Acoustical Soc of AmericaGoogle Scholar
  26. 26.
    Wong, R.: Quadrature formulas for oscillatory integral transforms. Numerische Mathematik 39(3), 351–360 (1982)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical PhysicsCentre for Mathematical SciencesCambridge UK

Personalised recommendations