BIT Numerical Mathematics

, Volume 54, Issue 1, pp 189–200 | Cite as

A bisection method for measuring the distance of a quadratic matrix polynomial to the quadratic matrix polynomials that are singular on the unit circle



The computation of the distance of a quadratic matrix polynomial to the quadratic matrix polynomials that are singular on the unit circle is investigated. The emphasis is placed on backward stable methods that transform the computation of the distance to a palindromic eigenvalue problem for which structure-preserving eigensolvers can be utilized in conjunction with a bisection algorithm. Reliability of the suggested methods is guaranteed by a novel error analysis.


Distance to instability Quadratic matrix polynomial Bisection algorithm Level set algorithm Error analysis 

Mathematics Subject Classification (2010)

15A22 93B35 



The authors thank the referees for making useful remarks and suggestions on the manuscript.


  1. 1.
    Benner, P., Mehrmann, V., Xu, H.: A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils. Numer. Math. 78(3), 329–358 (1998) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bini, D.A., Meini, B.: Effective methods for solving banded Toeplitz systems. SIAM J. Matrix Anal. Appl. 20, 700–719 (1999) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Boyd, S., Balakrishnan, V.: A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L -norm. Syst. Control Lett. 15, 1–7 (1990) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Boyd, S., Balakrishnan, V., Kabamba, P.: On computing the H -norm of a transfer function matrix. In: Proc. 1988 American Control Conference, Atlanta, GA, pp. 396–397 (1988) Google Scholar
  5. 5.
    Boyd, S., Balakrishnan, V., Kabamba, P.: A bisection method for computing the H -norm of a transfer function matrix and related problems. Math. Control Signals Syst. 2, 207–219 (1989) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bruinsma, N.A., Steinbruch, M.: A fast algorithm to compute the H -norm of a transfer function matrix. Syst. Control Lett. 14, 287–293 (1990) CrossRefMATHGoogle Scholar
  7. 7.
    Byers, R.: A bisection method for measuring the distance of a stable matrix to the unstable matrices. SIAM J. Sci. Stat. Comput. 9, 875–881 (1988) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Genin, Y., Stefan, R., Van Dooren, P.: Real and complex stability radii of polynomial matrices. Linear Algebra Appl. 351–352, 381–410 (2002) CrossRefGoogle Scholar
  9. 9.
    Gohberg, I., Lancaster, P., Rodman, L.: Matrix Polynomials. Academic Press, New York (1982) MATHGoogle Scholar
  10. 10.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996) MATHGoogle Scholar
  11. 11.
    Higham, N.J., Tisseur, F., Van Dooren, P.M.: Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems. Linear Algebra Appl. 351–352, 455–474 (2002) CrossRefGoogle Scholar
  12. 12.
    Hinrichsen, D., Pritchard, A.J.: Stability radii of linear systems. Syst. Control Lett. 7, 1–10 (1986) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Hinrichsen, D., Pritchard, A.J.: Stability radius for structured perturbations and algebraic Riccati equation. Syst. Control Lett. 8, 105–113 (1986) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I. Modelling, State Space Analysis, Stability and Robustness. Springer, Berlin (2005) MATHGoogle Scholar
  15. 15.
    Hinrichsen, D., Son, N.K.: Stability radii of linear discrete-time systems and symplectic pencils. Int. J. Robust Nonlinear Control 1, 79–97 (1991) CrossRefMATHGoogle Scholar
  16. 16.
    Kressner, D., Mengi, E.: Structure-preserving eigenvalue solvers for robust stability and controllability estimates. In: Proc. 45th IEEE Conf. Decision Control, San Diego, pp. 5174–5179 (2006) CrossRefGoogle Scholar
  17. 17.
    Kressner, D., Schröder, C., Watkins, D.S.: Implicit algorithms for palindromic and even eigenvalue problems. Numer. Algorithms 51, 209–238 (2009) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28, 1029–1051 (2006) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Numerical methods for palindromic eigenvalue problems: computing the anti-triangular Schur form. Numer. Linear Algebra Appl. 16, 63–86 (2009) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10, 241–256 (1973) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Pappas, G., Hinrichsen, D.: Robust stability of linear systems described by higher order dynamic equations. IEEE Trans. Autom. Control 38, 1430–1435 (1993) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Robel, G.: On computing the infinity norm. IEEE Trans. Autom. Control 34, 882–884 (1989) CrossRefMATHGoogle Scholar
  23. 23.
    Schröder, C.: URV decomposition based structured methods for palindromic and even eigenvalue problems. Matheon Preprint 375, TU Berlin (2007) Google Scholar
  24. 24.
    Schröder, C.: A QR-like algorithm for the palindromic eigenvalue problem. Matheon Preprint 388, TU Berlin (2007) Google Scholar
  25. 25.
    Tisseur, F., Higham, N.J.: Structured pseudospectra for polynomial eigenvalue problems, with applications. SIAM J. Matrix Anal. Appl. 23, 187–208 (2001) CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Tisseur, F., Meerbergen, K.: A survey of the quadratic eigenvalue problems. SIAM Rev. 42, 234–286 (2001) MathSciNetGoogle Scholar
  27. 27.
    Van Loan, C.F.: How near is a stable matrix to an unstable matrix. Contemp. Math. 47, 465–477 (1985) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BergenBergenNorway
  2. 2.CNRS-UMR 6205, Laboratoire de Mathématiques de Bretagne AtlantiqueUniversité de BrestBrest Cedex 3France

Personalised recommendations