Skip to main content
Log in

Eigenvalue enclosures and convergence for the linearized MHD operator

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Computation of certified enclosures for eigenvalues of benchmark linear magnetohydrodynamics (MHD) operators in the plane slab and cylindrical pinch configuration is discussed. For the plane slab, the proposed method relies upon the formulation of an eigenvalue problem associated to the Schur complement. This leads to highly accurate upper bounds for the eigenvalue. For the cylindrical configuration, a direct application of this formulation is possible, however, it cannot be rigourously justified. Therefore in this case the proposed method relies on a specialized technique based on a method proposed by Zimmermann and Mertins. It turns out that this technique is also applicable for finding accurate complementary bounds in the case of the plane slab. Convergence rates for both approaches are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Atkinson, F., Langer, H., Mennicken, R., Shkalikov, A.: The essential spectrum of some matrix operators. Math. Nachr. 167, 5–20 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Behnke, H., Mertins, U.: Bounds for eigenvalues with the use of finite elements. In: Perspectives on Enclosure Methods, Karlsruhe, 2000, pp. 119–131. Springer, Berlin (2001)

    Chapter  Google Scholar 

  3. Behnke, H.: Lower and upper bounds for sloshing frequencies. Int. Ser. Numer. Math. 157, 13–22 (2009)

    MathSciNet  Google Scholar 

  4. Boulton, L., Strauss, M.: On the convergence of second-order spectra and multiplicity. Proc. R. Soc. A 467, 264–275 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Davies, E.B.: Spectral enclosures and complex resonances for general self-adjoint operators. LMS J. Comput. Math. 1, 42–74 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Chatelin, F.: Spectral Approximation of Linear Operators. Academic Press, San Diego (1983)

    MATH  Google Scholar 

  7. Davies, E.B., Plum, M.: Spectral pollution. IMA J. Numer. Anal. 24, 417–438 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eschwe, D., Langer, M.: Variational principles for eigenvalues of self-adjoint operator functions. Inter. Equ. Oper. Theory 49, 287–321 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goerisch, F., Haunhorst, H.: Eigenwertschranken fur Eigenwertaufgaben mit Partiellen Differentialgleinschungen. Z. Angew. Math. Mech. 65, 129–135 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kako, T.: Essential spectrum of linearized MHD operator in cylindrical region. Z. Angew. Math. Phys. 38, 433–449 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kako, T., Descloux, J.: Spectral approximation for the linearized MHD operator in cylindrical region. Jpn. J. Ind. Appl. Math. 8, 221–244 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kato, T.: On the upper and lower bounds of eigenvalues. J. Phys. Soc. Jpn. 4, 334–339 (1949)

    Article  Google Scholar 

  13. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)

    MATH  Google Scholar 

  14. Levitin, M., Shargorodsky, E.: Spectral pollution and second order relative spectra for self-adjoint operators. IMA J. Numer. Anal. 24, 393–416 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kraus, M., Langer, M., Tretter, C.: Variational principles and eigenvalue estimates for unbounded block operator matrices and applications. J. Comput. Appl. Math. 171, 311–334 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lehmann, N.J.: Optimale Eigenwerteinschliessungen. Numer. Math. 5, 246–272 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lifschitz, A.: Magnetohydrodynamics and Spectral Theory. Kluwer Academic, Norwell (1989)

    Book  MATH  Google Scholar 

  18. Raikov, G.: The spectrum of a linear magnetohydrodynamic model with cylindrical symmetry. C. R. Acad. Bulgare Sci. 39, 17–20 (1986)

    MathSciNet  Google Scholar 

  19. Raikov, G.: The spectrum of a linear magnetohydrodynamic model with cylindrical symmetry. Arch. Ration. Mech. Anal. 116, 161–198 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rappaz, J.: Approximation of the spectrum of a non-compact operator given by the magnetohydrodynamic stability of a plasma. Numer. Math. 28, 15–24 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shargorodsky, E.: Geometry of higher order relative spectra and projection methods. J. Oper. Theory 44, 43–62 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Strauss, M.: Quadratic projection methods for approximating the spectrum of self-adjoint operators IMA. J. Numer. Anal. 31, 40–60 (2011)

    Article  MATH  Google Scholar 

  23. Strauss, M.: The second order spectrum and optimal convergence. Preprint (2012)

  24. Tretter, C.: Spectral Theory of Block Operator Matrices and Applications. Imperial College Press, London (2007)

    Google Scholar 

  25. Zimmermann, S., Mertins, U.: Variational bounds to eigenvalues of self-adjoint eigenvalue problems with arbitrary spectrum. Z. Anal. Anwend. 14, 327–345 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyonell Boulton.

Additional information

Communicated by Daniel Kressner.

This research was funded by EPSRC grant EP/I00761X/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulton, L., Strauss, M. Eigenvalue enclosures and convergence for the linearized MHD operator. Bit Numer Math 52, 801–825 (2012). https://doi.org/10.1007/s10543-012-0389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-012-0389-x

Keywords

Mathematics Subject Classification (2010)

Navigation